These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 7114390)
1. What basilar-membrane tuning says about cochlear micromechanics. Zwislocki JJ; Kletsky EJ Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390 [TBL] [Abstract][Full Text] [Related]
2. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Zwislocki JJ; Kletsky EJ Science; 1979 May; 204(4393):639-41. PubMed ID: 432671 [TBL] [Abstract][Full Text] [Related]
4. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Zwislocki JJ Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008 [TBL] [Abstract][Full Text] [Related]
5. Some current concepts of cochlear mechanics. Zwislocki JJ Audiology; 1983; 22(6):517-29. PubMed ID: 6667173 [TBL] [Abstract][Full Text] [Related]
6. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
7. Theory of cochlear mechanics. Zwislocki JJ Hear Res; 1980 Jun; 2(3-4):171-82. PubMed ID: 6997254 [TBL] [Abstract][Full Text] [Related]
8. Five decades of research on cochlear mechanics. Zwislocki JJ J Acoust Soc Am; 1980 May; 67(5):1679-85. PubMed ID: 7372924 [TBL] [Abstract][Full Text] [Related]
9. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Gummer AW; Hemmert W; Zenner HP Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8727-32. PubMed ID: 8710939 [TBL] [Abstract][Full Text] [Related]
10. A micromechanical model of the cochlea with radial movement of the tectorial membrane. Fukazawa T; Ishida K; Murai Y Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634 [TBL] [Abstract][Full Text] [Related]
11. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Cormack J; Liu Y; Nam JH; Gracewski SM J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927 [TBL] [Abstract][Full Text] [Related]
12. Cochlear anatomy related to cochlear micromechanics. A review. Lim DJ J Acoust Soc Am; 1980 May; 67(5):1686-95. PubMed ID: 6768784 [TBL] [Abstract][Full Text] [Related]
14. Direct visualization of organ of corti kinematics in a hemicochlea. Hu X; Evans BN; Dallos P J Neurophysiol; 1999 Nov; 82(5):2798-807. PubMed ID: 10561446 [TBL] [Abstract][Full Text] [Related]
15. The stretching nonlinearity of the basilar membrane in a cochlear model. Borsboom MJ; Viergever MA Hear Res; 1980 Jun; 2(3-4):485-92. PubMed ID: 7410253 [TBL] [Abstract][Full Text] [Related]
16. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Manley GA; Yates GK; Köppl C Hear Res; 1988 May; 33(2):181-9. PubMed ID: 3397328 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536 [TBL] [Abstract][Full Text] [Related]
18. Ultrastructural damage in cochleas used for studies of basilar membrane mechanics. Kelly JP; Khanna SM Hear Res; 1984 Apr; 14(1):59-78. PubMed ID: 6746422 [TBL] [Abstract][Full Text] [Related]
19. Mechanical filtering of sound in the inner ear. Brown AM; Gaskill SA; Williams DM Proc Biol Sci; 1992 Oct; 250(1327):29-34. PubMed ID: 1361059 [TBL] [Abstract][Full Text] [Related]
20. A model of cochlear micromechanics. Fukazawa T Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]