These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7115295)

  • 41. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition.
    Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER
    J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemical cross-linking of cyclic AMP-dependent protein kinase and its dissimilar subunits.
    Charlton JP; Huang CH; Huang LC
    Biochem J; 1983 Mar; 209(3):581-6. PubMed ID: 6307258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Versatility of mixed-function adsorbents in biospecific protein desorption: accidental affinity and an improved purification of aspartate transcarbamoylase from wheat germ.
    Yon RJ
    Anal Biochem; 1981 May; 113(2):219-28. PubMed ID: 7283131
    [No Abstract]   [Full Text] [Related]  

  • 44. Intramolecular crosslinking of gamma-glutamyl transpeptidase.
    Tate SS; Khadse V
    Arch Biochem Biophys; 1987 Jun; 255(2):304-8. PubMed ID: 2884927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase.
    Robey EA; Schachman HK
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on aspartase. VII. Subunit arrangement of Escherichia coli aspartase.
    Watanabe Y; Iwakura M; Tokushige M; Eguchi G
    Biochim Biophys Acta; 1981 Oct; 661(2):261-6. PubMed ID: 7028124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathways of assembly of aspartate transcarbamoylase from catalytic and regulatory subunits.
    Bothwell M; Schachman HK
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3221-5. PubMed ID: 4606892
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aspartate transcarbamoylase (Escherichia coli): preparation of subunits.
    Yang YR; Kirschner MW; Schachman HK
    Methods Enzymol; 1978; 51():35-41. PubMed ID: 357897
    [No Abstract]   [Full Text] [Related]  

  • 50. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains.
    Yang YR; Schachman HK
    Protein Sci; 1993 Jun; 2(6):1013-23. PubMed ID: 8318886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies of the subunit structure of wheat germ ribonucleic acid polymerase II.
    Jendrisak JJ; Burgess RR
    Biochemistry; 1977 May; 16(9):1959-64. PubMed ID: 857883
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis.
    Wente SR; Schachman HK
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):31-5. PubMed ID: 3540957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase.
    Murata LB; Schachman HK
    Protein Sci; 1996 Apr; 5(4):709-18. PubMed ID: 8845761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tetrameric structure of the nonactivated glucocorticoid receptor in cell extracts and intact cells.
    Rexin M; Busch W; Segnitz B; Gehring U
    FEBS Lett; 1988 Dec; 241(1-2):234-8. PubMed ID: 3197833
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody.
    Thompson NE; Aronson DB; Burgess RR
    J Biol Chem; 1990 Apr; 265(12):7069-77. PubMed ID: 2324114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Purification and characterization of lipases from wheat germ].
    Kapranchikov VS; Zherebtsov NA; Popova TN
    Prikl Biokhim Mikrobiol; 2004; 40(1):98-103. PubMed ID: 15029708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The inhibition of ornithine transcarbamoylase from Escherichia coli W by phaseolotoxin.
    Templeton MD; Sullivan PA; Shepherd MG
    Biochem J; 1984 Dec; 224(2):379-88. PubMed ID: 6393952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peptide-protein interaction markedly alters the functional properties of the catalytic subunit of aspartate transcarbamoylase.
    Zhou BB; Schachman HK
    Protein Sci; 1993 Jan; 2(1):103-12. PubMed ID: 8443583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assembly of the catalytic trimers of aspartate transcarbamoylase from unfolded polypeptide chains.
    Burns DL; Schachman HK
    J Biol Chem; 1982 Aug; 257(15):8648-54. PubMed ID: 7096328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two different forms of aggregated dimers of ribonuclease A.
    Gotte G; Libonati M
    Biochim Biophys Acta; 1998 Jul; 1386(1):106-12. PubMed ID: 9675255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.