These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7115327)

  • 1. Differential effects of starvation on alanine and glutamine transport in isolated rat hepatocytes.
    Hayes MR; McGivan JD
    Biochem J; 1982 Apr; 204(1):365-8. PubMed ID: 7115327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat liver cells.
    Joseph SK; Bradford NM; McGivan JD
    Biochem J; 1978 Dec; 176(3):827-36. PubMed ID: 747655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine is a good substrate for glycogen synthesis in isolated hepatocytes from 72 h-starved rats, but not from 24 h- or 48 h-starved rats.
    Mouterde O; Claeyssens S; Chedeville A; Lavoinne A
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):795-9. PubMed ID: 1471995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starvation and endotoxin act independently and synergistically to coordinate hepatic glutamine transport.
    Fischer CP; Bode BP; Souba WW
    J Trauma; 1996 May; 40(5):688-92; discussion 692-3. PubMed ID: 8614065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transport of glutamine and alanine into rat colonocytes.
    Ardawi MS
    Biochem J; 1986 Aug; 238(1):131-5. PubMed ID: 3800929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-gradient-stimulated transport of L-alanine by plasma-membrane vesicles isolated from liver parenchymal cells of fed and starved rats. Crucial role of the adrenal glucocorticoids.
    Quinlan DC; Todderud CG; Kelley DS; Kletzien RF
    Biochem J; 1982 Dec; 208(3):685-93. PubMed ID: 7165726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport of alanine and glutamine into isolated rat intestinal epithelial cells.
    Bradford NM; McGivan JD
    Biochim Biophys Acta; 1982 Jul; 689(1):55-62. PubMed ID: 7104350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of L-alanine and L-glutamine by lactating mammary gland of the rat. A role for L-alanine as a lipogenic precursor.
    Viña JR; Williamson DH
    Biochem J; 1981 Jun; 196(3):757-62. PubMed ID: 7317014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.
    Fafournoux P; Rémésy C; Demigné C
    Biochem J; 1983 Mar; 210(3):645-52. PubMed ID: 6870800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle glutamine production in diabetic ketoacidotic rats.
    Goldstein L; Perlman DF; McLaughlin PM; King PA; Cha CJ
    Biochem J; 1983 Sep; 214(3):757-67. PubMed ID: 6414461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of L-glutamine and L-glutamate across sinusoidal membranes of rat liver. Effects of starvation, diabetes and corticosteroid treatment.
    Low SY; Taylor PM; Hundal HS; Pogson CI; Rennie MJ
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):333-40. PubMed ID: 1350902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of the effect of amino acids on ethanol oxidation in isolated hepatocytes from starved and fed rats.
    Beaugé F; Mangeney M; Nordmann J; Nordmann R
    Adv Exp Med Biol; 1980; 132():393-402. PubMed ID: 7424719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver and kidney cortex gluconeogenesis from L-alanine in fed and starved rats.
    Zorzano A; Herrera E
    Int J Biochem; 1984; 16(3):263-7. PubMed ID: 6698293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of the stress caused by experimental procedures on alanine, aspartate, glutamate and glutamine in rat liver.
    Heath DF; George DR; Rose JG
    Biochem J; 1971 Dec; 125(3):765-71. PubMed ID: 5145894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starvation-induced increase of hepatic alanine uptake is related to changes in sensitivity to SH-group reagents.
    Felipe A; Remesar X; Pastor-Anglada M
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R598-604. PubMed ID: 7900901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of nitrogen from 15NH4Cl and [15N]alanine for urea synthesis in hepatocytes from fed and starved rats.
    Wiechetek M; Souffrant WB; Garwacki S
    Int J Biochem; 1986; 18(7):653-7. PubMed ID: 3743873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of amino acid transport into liver cells from rats adapted to a high-protein diet.
    Fafournoux P; Rémésy C; Demigné C
    Biochem J; 1982 Jul; 206(1):13-8. PubMed ID: 7126187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional transport of glutamine across the cell membrane in rat liver.
    Fafournoux P; Demigné C; Rémésy C; Le Cam A
    Biochem J; 1983 Nov; 216(2):401-8. PubMed ID: 6661205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of alanine transport and metabolism by dibutyryl cyclic AMP in the hepatocytes from fed rats. Assessment of transport as a potential rate-limiting step for alanine metabolism.
    McGivan JD; Ramsell JC; Lacey JH
    Biochim Biophys Acta; 1981 Jun; 644(2):295-304. PubMed ID: 6266469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of gluconeogenesis from various precursors in isolated rat hepatocytes during starvation or after feeding a high protein, carbohydrate-free diet.
    Azzout B; Bois-Joyeux B; Chanez M; Peret J
    J Nutr; 1987 Jan; 117(1):164-9. PubMed ID: 3819863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.