BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7115367)

  • 1. Aging of the erythrocyte. XI. Membrane glycosylation.
    Bartosz G
    Biochem Med; 1982 Jun; 27(3):398-400. PubMed ID: 7115367
    [No Abstract]   [Full Text] [Related]  

  • 2. Thermal lability of membrane proteins of age separated erythrocytes as studied by electron spin resonance spin label technique.
    Bartosz G; Christ G; Bosse H; Stephan R; Gärtner H
    Z Naturforsch C J Biosci; 1987; 42(11-12):1343-4. PubMed ID: 2834887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent modification of membrane components during erythrocyte aging.
    Swislocki NI; Tierney JM
    Prog Clin Biol Res; 1985; 195():195-211. PubMed ID: 2865744
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of in-vivo ageing of the human erythrocyte on the proteins of the plasma membrane. A comparison with metabolic depletion and blood bank storage.
    Kadlubowski M
    Int J Biochem; 1978; 9(2):79-88. PubMed ID: 640129
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of cell shape on extravascular hemolysis.
    Cosgrove P; Sheetz MP
    Blood; 1982 Feb; 59(2):421-7. PubMed ID: 7055647
    [No Abstract]   [Full Text] [Related]  

  • 6. Lack of some Ca2+-mediated processes in goat erythrocytes.
    Khan MT; Saleemuddin M
    Biochim Biophys Acta; 1988 May; 940(1):165-9. PubMed ID: 3130104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Protein changes of the erythrocyte membrane during blood preservation].
    Stibenz D; Brox D; Geyer G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):459-71. PubMed ID: 6159283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of atherogenesis on erythrocyte membrane glycoproteins.
    Begum N; Singh M
    Indian J Exp Biol; 1979 Aug; 17(8):778-9. PubMed ID: 544450
    [No Abstract]   [Full Text] [Related]  

  • 9. Membrane rafts in the erythrocyte membrane: a novel role of MPP1p55.
    Sikorski AF; Podkalicka J; Jones W; Biernatowska A
    Adv Exp Med Biol; 2015; 842():61-78. PubMed ID: 25408337
    [No Abstract]   [Full Text] [Related]  

  • 10. Hypotheses on the physiological role of enzymatic protein methyl esterification using human erythrocytes as a model system.
    Galletti P; Manna C; Ingrosso D; Iardino P; Zappia V
    Adv Exp Med Biol; 1991; 307():149-60. PubMed ID: 1805583
    [No Abstract]   [Full Text] [Related]  

  • 11. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes.
    Miller JA; Gravallese E; Bunn HF
    J Clin Invest; 1980 Apr; 65(4):896-901. PubMed ID: 7358849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural modifications in membrane glycoproteins during the erythrocyte life-span.
    Balduini C; Brovelli A; Balduini CL; Ascari E
    Ric Clin Lab; 1979; 9(1):13-22. PubMed ID: 493810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in carbohydrate structure of membrane glycoproteins during development of human erythrocytes (author's transl)].
    Fukuda M
    Seikagaku; 1980; 52(4):244-9. PubMed ID: 6157759
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease.
    Anderson DR; Davis JL; Carraway KL
    J Biol Chem; 1977 Oct; 252(19):6617-23. PubMed ID: 893431
    [No Abstract]   [Full Text] [Related]  

  • 15. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane.
    Haest CW
    Biochim Biophys Acta; 1982 Dec; 694(4):331-52. PubMed ID: 6218824
    [No Abstract]   [Full Text] [Related]  

  • 16. Reconstitution of the erythrocyte anion transport system: in vitro and in vivo approaches.
    Cabantchik ZI; Volsky DJ; Ginsburg H; Loyter A
    Ann N Y Acad Sci; 1980; 341():444-54. PubMed ID: 6249154
    [No Abstract]   [Full Text] [Related]  

  • 17. Increased methyl esterification of membrane proteins in aged red-blood cells. Preferential esterification of ankyrin and band-4.1 cytoskeletal proteins.
    Galletti P; Ingrosso D; Nappi A; Gragnaniello V; Iolascon A; Pinto L
    Eur J Biochem; 1983 Sep; 135(1):25-31. PubMed ID: 6224690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Water soluble proteins in human erythrocyte membranes. Difference in composition and phosphorylation depending on extraction conditions].
    Lecomte MC; Galand C; Boivin P
    Nouv Rev Fr Hematol (1978); 1982; 24(6):349-58. PubMed ID: 7167384
    [No Abstract]   [Full Text] [Related]  

  • 19. Membrane protein segregation during release of microvesicles from human erythrocytes.
    Shukla SD; Berriman J; Coleman R; Finean JB; Michell RH
    FEBS Lett; 1978 Jun; 90(2):289-92. PubMed ID: 352723
    [No Abstract]   [Full Text] [Related]  

  • 20. Conformational changes and oxidation of membrane proteins in senescent human erythrocytes.
    Brovelli A; Castellana MA; Minetti G; Piccinini G; Seppi C; De Renzis MR; Balduini C
    Adv Exp Med Biol; 1991; 307():59-73. PubMed ID: 1805602
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.