These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7115394)
1. Effects of thyroid hormone administration on the susceptibility of rat liver chromatin to digestion with micrococcal nuclease. Nikodem VM; Rall JE Biochem Biophys Res Commun; 1982 Jun; 106(4):1148-54. PubMed ID: 7115394 [No Abstract] [Full Text] [Related]
2. Nuclear-hormone mediated changes in chromatin solubility. Re RN; LaBiche RA; Bryan SE Biochem Biophys Res Commun; 1983 Jan; 110(1):61-8. PubMed ID: 6838524 [TBL] [Abstract][Full Text] [Related]
3. Thyroid hormone receptor-containing fragment released from chromatin by deoxyribonuclease I and micrococcal nuclease. Jump DB; Oppenheimer JH Science; 1980 Aug; 209(4458):811-3. PubMed ID: 6250215 [TBL] [Abstract][Full Text] [Related]
4. Alteration of higher order structure of rat liver chromatin by dietary composition. Castro CE; Sevall JS J Nutr; 1980 Jan; 110(1):105-16. PubMed ID: 7354375 [TBL] [Abstract][Full Text] [Related]
5. Chromatin structure. Nuclease digestion profiles reflect intermediate stages in the folding of the 30-nm fiber rather than the existence of subunit beads. Walker PR; Sikorska M; Whitfield JF J Biol Chem; 1986 May; 261(15):7044-51. PubMed ID: 3700426 [TBL] [Abstract][Full Text] [Related]
6. Superstructural differences between chromatin in nuclei and in solution are revealed by kinetics of micrococcal nuclease digestion. Levinger LF; Carter CW J Biol Chem; 1979 Oct; 254(19):9477-87. PubMed ID: 489546 [TBL] [Abstract][Full Text] [Related]
7. Chromatin structural transitions following histone H1 displacement by phosphatidylserine vesicles and low pH treatment. A multiparametric analysis involving flow cytometry, electron microscopy, and nuclease digestion. Cocco L; Papa S; Maraldi NM; Santi P; Martelli AM; Rizzoli R; Manzoli FA J Histochem Cytochem; 1988 Jan; 36(1):65-71. PubMed ID: 3335771 [TBL] [Abstract][Full Text] [Related]
8. The involvement of histone H1[0] in chromatin structure. Roche J; Girardet JL; Gorka C; Lawrence JJ Nucleic Acids Res; 1985 Apr; 13(8):2843-53. PubMed ID: 4000966 [TBL] [Abstract][Full Text] [Related]
9. Association of the thyroid hormone receptor with rat liver chromatin. Jump DB; Seelig S; Schwartz HL; Oppenheimer JH Biochemistry; 1981 Nov; 20(24):6781-9. PubMed ID: 6274379 [TBL] [Abstract][Full Text] [Related]
10. The structural organization of mouse chromatin as a function of age. Gaubatz J; Ellis M; Chalkley R Fed Proc; 1979 May; 38(6):1973-8. PubMed ID: 437140 [TBL] [Abstract][Full Text] [Related]
11. Influence of high-mobility-group nonhistone chromosomal proteins 1 and 2 on the digestion of chromatin with micrococcal nuclease. Marekov LN; Beltchev BG Arch Biochem Biophys; 1982 Dec; 219(2):261-7. PubMed ID: 6219623 [No Abstract] [Full Text] [Related]
12. Enzymatic probes for histone-DNA complexes: micrococcal nuclease activity under conditions useful for the investigation of chromatin structure. Diaz P; Daban JR J Biochem Biophys Methods; 1986 Aug; 13(1):57-9. PubMed ID: 3772020 [No Abstract] [Full Text] [Related]
13. Distribution of histones and non-histone proteins in chromatin fractions after digestion of nuclei with micrococcal nuclease. Norell M; Aström S; von der Decken A Cell Mol Biol; 1984; 30(2):137-44. PubMed ID: 6713459 [No Abstract] [Full Text] [Related]
14. Identical pattern of release of specific triiodothyronine receptors by micrococcal nuclease from rat cerebral cortex and liver nuclei. Silva JE Endocrinology; 1983 Aug; 113(2):699-705. PubMed ID: 6307648 [No Abstract] [Full Text] [Related]
15. Selective displacement of histone H1 from whole HeLa nuclei: effect on chromatin structure in situ as probed by micrococcal nuclease. Lawson GM; Cole RD Biochemistry; 1979 May; 18(11):2160-6. PubMed ID: 444446 [No Abstract] [Full Text] [Related]
16. Superstructure and CD spectrum as probes of chromatin integrity. de Murcia G; Das GC; Erard M; Daune M Nucleic Acids Res; 1978 Feb; 5(2):523-35. PubMed ID: 634797 [TBL] [Abstract][Full Text] [Related]
17. ADP-ribosylation induced changes in the conformation of the chromatin of the brain of developing rats. Das BR; Kanungo MS Biochem Int; 1986 Feb; 12(2):303-11. PubMed ID: 3964286 [TBL] [Abstract][Full Text] [Related]
18. Effects of thyrotropin on thyroid chromatin. Enhanced sensitivity to micrococcal nuclease and increased nuclear protein phosphorylation. Cooper E; Abe Y; Palmer RJ; Spaulding SW Biochim Biophys Acta; 1983 Jun; 740(2):179-84. PubMed ID: 6860668 [TBL] [Abstract][Full Text] [Related]
19. Presence of protein A24 in rat liver nucleosomes. Goldknopf IL; French MF; Musso R; Busch H Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5492-5. PubMed ID: 271971 [TBL] [Abstract][Full Text] [Related]
20. Differences in pattern of release of triiodothyronine (T3) and tetraiodothyronine (T4) associated receptors from chromatin by micrococcal nuclease. Yiannakouris N; Valcana T Horm Metab Res; 1998 Jan; 30(1):7-11. PubMed ID: 9503032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]