BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7115394)

  • 1. Effects of thyroid hormone administration on the susceptibility of rat liver chromatin to digestion with micrococcal nuclease.
    Nikodem VM; Rall JE
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1148-54. PubMed ID: 7115394
    [No Abstract]   [Full Text] [Related]  

  • 2. Nuclear-hormone mediated changes in chromatin solubility.
    Re RN; LaBiche RA; Bryan SE
    Biochem Biophys Res Commun; 1983 Jan; 110(1):61-8. PubMed ID: 6838524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid hormone receptor-containing fragment released from chromatin by deoxyribonuclease I and micrococcal nuclease.
    Jump DB; Oppenheimer JH
    Science; 1980 Aug; 209(4458):811-3. PubMed ID: 6250215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of higher order structure of rat liver chromatin by dietary composition.
    Castro CE; Sevall JS
    J Nutr; 1980 Jan; 110(1):105-16. PubMed ID: 7354375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin structure. Nuclease digestion profiles reflect intermediate stages in the folding of the 30-nm fiber rather than the existence of subunit beads.
    Walker PR; Sikorska M; Whitfield JF
    J Biol Chem; 1986 May; 261(15):7044-51. PubMed ID: 3700426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superstructural differences between chromatin in nuclei and in solution are revealed by kinetics of micrococcal nuclease digestion.
    Levinger LF; Carter CW
    J Biol Chem; 1979 Oct; 254(19):9477-87. PubMed ID: 489546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin structural transitions following histone H1 displacement by phosphatidylserine vesicles and low pH treatment. A multiparametric analysis involving flow cytometry, electron microscopy, and nuclease digestion.
    Cocco L; Papa S; Maraldi NM; Santi P; Martelli AM; Rizzoli R; Manzoli FA
    J Histochem Cytochem; 1988 Jan; 36(1):65-71. PubMed ID: 3335771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of histone H1[0] in chromatin structure.
    Roche J; Girardet JL; Gorka C; Lawrence JJ
    Nucleic Acids Res; 1985 Apr; 13(8):2843-53. PubMed ID: 4000966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of the thyroid hormone receptor with rat liver chromatin.
    Jump DB; Seelig S; Schwartz HL; Oppenheimer JH
    Biochemistry; 1981 Nov; 20(24):6781-9. PubMed ID: 6274379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural organization of mouse chromatin as a function of age.
    Gaubatz J; Ellis M; Chalkley R
    Fed Proc; 1979 May; 38(6):1973-8. PubMed ID: 437140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of high-mobility-group nonhistone chromosomal proteins 1 and 2 on the digestion of chromatin with micrococcal nuclease.
    Marekov LN; Beltchev BG
    Arch Biochem Biophys; 1982 Dec; 219(2):261-7. PubMed ID: 6219623
    [No Abstract]   [Full Text] [Related]  

  • 12. Enzymatic probes for histone-DNA complexes: micrococcal nuclease activity under conditions useful for the investigation of chromatin structure.
    Diaz P; Daban JR
    J Biochem Biophys Methods; 1986 Aug; 13(1):57-9. PubMed ID: 3772020
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of histones and non-histone proteins in chromatin fractions after digestion of nuclei with micrococcal nuclease.
    Norell M; Aström S; von der Decken A
    Cell Mol Biol; 1984; 30(2):137-44. PubMed ID: 6713459
    [No Abstract]   [Full Text] [Related]  

  • 14. Identical pattern of release of specific triiodothyronine receptors by micrococcal nuclease from rat cerebral cortex and liver nuclei.
    Silva JE
    Endocrinology; 1983 Aug; 113(2):699-705. PubMed ID: 6307648
    [No Abstract]   [Full Text] [Related]  

  • 15. Selective displacement of histone H1 from whole HeLa nuclei: effect on chromatin structure in situ as probed by micrococcal nuclease.
    Lawson GM; Cole RD
    Biochemistry; 1979 May; 18(11):2160-6. PubMed ID: 444446
    [No Abstract]   [Full Text] [Related]  

  • 16. Superstructure and CD spectrum as probes of chromatin integrity.
    de Murcia G; Das GC; Erard M; Daune M
    Nucleic Acids Res; 1978 Feb; 5(2):523-35. PubMed ID: 634797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylation induced changes in the conformation of the chromatin of the brain of developing rats.
    Das BR; Kanungo MS
    Biochem Int; 1986 Feb; 12(2):303-11. PubMed ID: 3964286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thyrotropin on thyroid chromatin. Enhanced sensitivity to micrococcal nuclease and increased nuclear protein phosphorylation.
    Cooper E; Abe Y; Palmer RJ; Spaulding SW
    Biochim Biophys Acta; 1983 Jun; 740(2):179-84. PubMed ID: 6860668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of protein A24 in rat liver nucleosomes.
    Goldknopf IL; French MF; Musso R; Busch H
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5492-5. PubMed ID: 271971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in pattern of release of triiodothyronine (T3) and tetraiodothyronine (T4) associated receptors from chromatin by micrococcal nuclease.
    Yiannakouris N; Valcana T
    Horm Metab Res; 1998 Jan; 30(1):7-11. PubMed ID: 9503032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.