BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7115674)

  • 1. Effects of pH on low-salt transition of chromatin core particles.
    Libertini LJ; Small EW
    Biochemistry; 1982 Jul; 21(14):3327-34. PubMed ID: 7115674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pH on the stability of chromatin core particles.
    Libertini LJ; Small EW
    Nucleic Acids Res; 1984 May; 12(10):4351-9. PubMed ID: 6728680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility of the low-salt transition of chromatin core particles.
    Libertini LJ; Small EW
    Nucleic Acids Res; 1987 Aug; 15(16):6655-64. PubMed ID: 3628003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains.
    Schwarz PM; Felthauser A; Fletcher TM; Hansen JC
    Biochemistry; 1996 Apr; 35(13):4009-15. PubMed ID: 8672434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt induced transitions of chromatin core particles studied by tyrosine fluorescence anisotropy.
    Libertini LJ; Small EW
    Nucleic Acids Res; 1980 Aug; 8(16):3517-34. PubMed ID: 7433098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation equilibria of Escherichia coli RNA polymerase: evidence for anion-linked conformational transitions in the protomers of core and holoenzyme.
    Shaner SL; Piatt DM; Wensley CG; Yu H; Burgess RR; Record MT
    Biochemistry; 1982 Oct; 21(22):5539-51. PubMed ID: 6756471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions.
    Overman LB; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):165-78. PubMed ID: 8107102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase.
    Crow VL; Pritchard GG
    Biochim Biophys Acta; 1977 Mar; 481(1):105-14. PubMed ID: 14688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased stability of the higher order structure of chicken erythrocyte chromatin: nanosecond anisotropy studies of intercalated ethidium.
    Ashikawa I; Kinosita K; Ikegami A; Nishimura Y; Tsuboi M
    Biochemistry; 1985 Mar; 24(6):1291-7. PubMed ID: 3986177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase.
    Ebel C; Faou P; Kernel B; Zaccai G
    Biochemistry; 1999 Jul; 38(28):9039-47. PubMed ID: 10413477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt and divalent cations affect the flexible nature of the natural beaded chromatin structure.
    Christiansen G; Griffith J
    Nucleic Acids Res; 1977 Jun; 4(6):1837-51. PubMed ID: 197496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on histone oligomers. III. Effects of salt concentration and pH on the stability of histone octamer in chicken erythrocyte chromatin.
    Kawashima S; Imahori K
    J Biochem; 1982 Mar; 91(3):959-66. PubMed ID: 7076655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent cation competition with [3H]saxitoxin binding to tetrodotoxin-resistant and -sensitive sodium channels. A two-site structural model of ion/toxin interaction.
    Doyle DD; Guo Y; Lustig SL; Satin J; Rogart RB; Fozzard HA
    J Gen Physiol; 1993 Feb; 101(2):153-82. PubMed ID: 8384241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone H1--DNA interaction. On the mechanism of DNA strands crosslinking by histone H1.
    Glotov BO; Nikolaev LG; Severin ES
    Nucleic Acids Res; 1978 Jul; 5(7):2587-605. PubMed ID: 27766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of acetylcholinesterase by monovalent (Na+,K+) and divalent (Ca2+,Mg2+) cations.
    Hofer P; Fringeli UP; Hopff WH
    Biochemistry; 1984 Jun; 23(12):2730-4. PubMed ID: 6466611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.
    Kolber MA; Haynes DH
    Biophys J; 1981 Nov; 36(2):369-91. PubMed ID: 6796150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt effects on beta-glucosidase: pH-profile narrowing.
    Bowers EM; Ragland LO; Byers LD
    Biochim Biophys Acta; 2007 Dec; 1774(12):1500-7. PubMed ID: 17997993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187.
    Pfeiffer DR; Lardy HA
    Biochemistry; 1976 Mar; 15(5):935-43. PubMed ID: 3212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.