These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 7115698)
1. Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart. Kauppinen RA; Hiltunen JK; Hassinen IE Biochim Biophys Acta; 1982 Aug; 681(2):286-91. PubMed ID: 7115698 [TBL] [Abstract][Full Text] [Related]
2. Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes. Kauppinen R Biochim Biophys Acta; 1983 Oct; 725(1):131-7. PubMed ID: 6626538 [TBL] [Abstract][Full Text] [Related]
3. Properties of the citrate transporter in rat heart: implications for regulation of glycolysis by cytosolic citrate. Cheema-Dhadli S; Robinson BH; Halperin ML Can J Biochem; 1976 Jun; 54(6):561-5. PubMed ID: 1276981 [TBL] [Abstract][Full Text] [Related]
4. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Randle PJ; England PJ; Denton RM Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122 [TBL] [Abstract][Full Text] [Related]
5. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Hiltunen JK; Hassinen IE Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244 [TBL] [Abstract][Full Text] [Related]
6. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. Parlo RA; Coleman PS J Biol Chem; 1984 Aug; 259(16):9997-10003. PubMed ID: 6469976 [TBL] [Abstract][Full Text] [Related]
7. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart. Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart. Kauppinen RA; Hiltunen JK; Hassinen IE Biochim Biophys Acta; 1983 Dec; 725(3):425-33. PubMed ID: 6652078 [TBL] [Abstract][Full Text] [Related]
9. Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Soboll S; Elbers R; Scholz R; Heldt HW Hoppe Seylers Z Physiol Chem; 1980 Jan; 361(1):69-76. PubMed ID: 7358333 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial transmembrane potential and pH gradient during anoxia. Andersson BS; Aw TY; Jones DP Am J Physiol; 1987 Apr; 252(4 Pt 1):C349-55. PubMed ID: 3565555 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial transmembrane ion distribution during anoxia. Aw TY; Andersson BS; Jones DP Am J Physiol; 1987 Apr; 252(4 Pt 1):C356-61. PubMed ID: 3565556 [TBL] [Abstract][Full Text] [Related]
12. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Porter RK; Brand MD Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171 [TBL] [Abstract][Full Text] [Related]
14. Monitoring of mitochondrial membrane potential in isolated perfused rat heart. Kauppinen RA; Hassinen IE Am J Physiol; 1984 Oct; 247(4 Pt 2):H508-16. PubMed ID: 6496697 [TBL] [Abstract][Full Text] [Related]
15. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Neely JR; Denton RM; England PJ; Randle PJ Biochem J; 1972 Jun; 128(1):147-59. PubMed ID: 5085551 [TBL] [Abstract][Full Text] [Related]
16. Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship to the control of the cycle. Rowan AN; Newsholme EA Biochem J; 1979 Jan; 178(1):209-16. PubMed ID: 435278 [TBL] [Abstract][Full Text] [Related]
17. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Baggetto LG; Testa-Parussini R Arch Biochem Biophys; 1990 Dec; 283(2):241-8. PubMed ID: 2275543 [TBL] [Abstract][Full Text] [Related]
18. Citrate release by perfused rat hearts: a window on mitochondrial cataplerosis. Vincent G; Comte B; Poirier M; Rosiers CD Am J Physiol Endocrinol Metab; 2000 May; 278(5):E846-56. PubMed ID: 10780941 [TBL] [Abstract][Full Text] [Related]
19. A method of determining electrical potential gradient across mitochondrial membrane in perfused rat hearts. Wan B; Doumen C; Duszynski J; Salama G; LaNoue KF Am J Physiol; 1993 Aug; 265(2 Pt 2):H445-52. PubMed ID: 8368347 [TBL] [Abstract][Full Text] [Related]
20. Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Baggetto LG; Clottes E; Vial C Cancer Res; 1992 Sep; 52(18):4935-41. PubMed ID: 1516050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]