These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7115892)

  • 1. Steady-state opticohydrodynamic properties of DNA: molecular weight dependence and the internal viscosity problem.
    Reeg CF; Harrington RE
    Biopolymers; 1982 Jul; 21(7):1315-32. PubMed ID: 7115892
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of solvent viscosity and temperature on DNA viscoelastic behavior.
    Ostashevsky JY; Lange CS
    Biopolymers; 1986 Feb; 25(2):291-306. PubMed ID: 3955192
    [No Abstract]   [Full Text] [Related]  

  • 3. Precollapse of T7 DNA by spermidine at low ionic strength: a linear dichroism and intrinsic viscosity study.
    Baase WA; Staskus PW; Allison SA
    Biopolymers; 1984 Dec; 23(12):2835-51. PubMed ID: 6525403
    [No Abstract]   [Full Text] [Related]  

  • 4. [Mechanism of recognition of AT-pairs in DNA by molecules of the dye Hoechst 33258].
    Zasedatelev AS; Mikhaĭlov MV; Krylov AS; Gurskiĭ GV
    Dokl Akad Nauk SSSR; 1980; 255(3):756-60. PubMed ID: 6160958
    [No Abstract]   [Full Text] [Related]  

  • 5. Block heterogeneity of DNA from calf thymus and E. coli.
    Shugalii AV; Frank-Kamenetskii MD; Lazurkin YS
    Mol Biol; 1971; 5(5):613-7. PubMed ID: 4949528
    [No Abstract]   [Full Text] [Related]  

  • 6. Intrinsic viscosity of DNA: salt dependence and current polyelectrolyte theory.
    Harrington RE
    Biopolymers; 1980 Feb; 19(2):449-51. PubMed ID: 7370404
    [No Abstract]   [Full Text] [Related]  

  • 7. Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA.
    Schmitz KS; Schurr JM
    Biopolymers; 1973; 12(7):1543-64. PubMed ID: 4582231
    [No Abstract]   [Full Text] [Related]  

  • 8. Dynamic light-scattering studies of DNA. II. Effect of ionic strength on the structure and internal dynamics of viral phi 29 DNA.
    Thomas JC; Schurr JM
    Biopolymers; 1980 Jan; 19(1):215-8. PubMed ID: 7189421
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of 60Co-gamma-rays on the infrared spectra of DNA.
    Károlyi G; Skapinyecz J; Somogyi B; Damjanovich S
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(2):179-85. PubMed ID: 4677679
    [No Abstract]   [Full Text] [Related]  

  • 10. Flow birefringence of T7 phage DNA: dependence on salt concentration.
    Cairney KL; Harrington RE
    Biopolymers; 1982 May; 21(5):923-34. PubMed ID: 7082770
    [No Abstract]   [Full Text] [Related]  

  • 11. Study of DNA films by the CD, X-ray and polarization microscopy techniques.
    Potaman VN; Alexeev DG; Skuratovskii IYa ; Rabinovich AZ; Shlyakhtenko LS
    Nucleic Acids Res; 1981 Jan; 9(1):55-64. PubMed ID: 7193862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Light scattering and viscosity measurements on partly denatured thymus DNA].
    Schurz J; Uragg H; Belegratis M; Gruber E
    Hoppe Seylers Z Physiol Chem; 1970 Jul; 351(7):843-53. PubMed ID: 5464654
    [No Abstract]   [Full Text] [Related]  

  • 13. Flow dichroism of capsid DNA phages. I. Fast and slow T4B.
    Hall SB; Schellman JA
    Biopolymers; 1982 Oct; 21(10):1991-2010. PubMed ID: 7171725
    [No Abstract]   [Full Text] [Related]  

  • 14. Optico-hydrodynamic properties of high molecular weight DNA from steady-state flow birefringence and viscosity at extremely low velocity gradients.
    Harrington RE
    Biopolymers; 1970 Feb; 9(2):159-93. PubMed ID: 5416804
    [No Abstract]   [Full Text] [Related]  

  • 15. Short electric-field pulses convert DNA from "condensed" to "free" conformation.
    Porschke D
    Biopolymers; 1985 Oct; 24(10):1981-93. PubMed ID: 2934098
    [No Abstract]   [Full Text] [Related]  

  • 16. Anomalous electric birefringence behavior of sonicated DNA fragments as observed in reversing-pulse transients and steady-state sign reversal: a multicomponent approach.
    Yamaoka K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):97-106. PubMed ID: 17337341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between poly(9,9-bis(6'-N,N,N-trimethylammonium)hexyl)fluorene phenylene bromide and DNA as seen by spectroscopy, viscosity, and conductivity: effect of molecular weights and DNA secondary structure.
    Monteserín M; Burrows HD; Valente AJ; Mallavia R; Di Paolo RE; Maçanita AL; Tapia MJ
    J Phys Chem B; 2009 Feb; 113(5):1294-1302. PubMed ID: 19140754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient electric birefringence of T7 viral DNA.
    Rau DC; Bloomfield VA
    Biopolymers; 1979 Nov; 18(11):2783-805. PubMed ID: 508903
    [No Abstract]   [Full Text] [Related]  

  • 20. Interactions of molecules with nucleic acids. VII. Intercalation and T.A specificity of daunomycin in DNA.
    Newlin DD; Miller KJ; Pilch DF
    Biopolymers; 1984 Jan; 23(1):139-58. PubMed ID: 6696975
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.