These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7116582)
1. Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Colli-Franzone P; Guerri L; Viganotti C; Macchi E; Baruffi S; Spaggiari S; Taccardi B Circ Res; 1982 Sep; 51(3):330-46. PubMed ID: 7116582 [TBL] [Abstract][Full Text] [Related]
2. Oblique dipole layer potentials applied to electrocardiology. Colli-Franzone P; Guerri L; Viganotti C J Math Biol; 1983; 17(1):93-124. PubMed ID: 6875409 [TBL] [Abstract][Full Text] [Related]
3. Spread of excitation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle activated by point stimulation. Franzone PC; Guerri L; Taccardi B J Cardiovasc Electrophysiol; 1993 Apr; 4(2):144-60. PubMed ID: 8269287 [TBL] [Abstract][Full Text] [Related]
4. Effects of rotational myocardial anisotropy in forward potential computations with equivalent heart dipoles. Thivierge M; Gulrajani RM; Savard P Ann Biomed Eng; 1997; 25(3):477-98. PubMed ID: 9146803 [TBL] [Abstract][Full Text] [Related]
5. Multiple components in the unipolar electrogram: a simulation study in a three-dimensional model of ventricular myocardium. Taccardi B; Veronese S; Franzone PC; Guerri L J Cardiovasc Electrophysiol; 1998 Oct; 9(10):1062-84. PubMed ID: 9817558 [TBL] [Abstract][Full Text] [Related]
6. Spread of excitation in 3-D models of the anisotropic cardiac tissue. III. Effects of ventricular geometry and fiber structure on the potential distribution. Colli Franzone P; Guerri L; Pennacchio M; Taccardi B Math Biosci; 1998 Jul; 151(1):51-98. PubMed ID: 9664760 [TBL] [Abstract][Full Text] [Related]
7. Effect of myocardial fiber direction on epicardial potentials. Taccardi B; Macchi E; Lux RL; Ershler PR; Spaggiari S; Baruffi S; Vyhmeister Y Circulation; 1994 Dec; 90(6):3076-90. PubMed ID: 7994857 [TBL] [Abstract][Full Text] [Related]
8. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703 [TBL] [Abstract][Full Text] [Related]
9. The canine heart as an electrocardiographic generator. Dependence on cardiac cell orientation. Corbin LV; Scher AM Circ Res; 1977 Jul; 41(1):58-67. PubMed ID: 862144 [TBL] [Abstract][Full Text] [Related]
10. The effect of cardiac electric anisotropy on epicardial potential fields during ventricular repolarization. Spaggiari S; Baruffi S; Macchi E; Traversa M; Arisi G; Taccardi B Jpn Heart J; 1986 Nov; 27 Suppl 1():217-23. PubMed ID: 3820587 [TBL] [Abstract][Full Text] [Related]
11. Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies. Taccardi B; Punske BB; Sachse F; Tricoche X; Colli-Franzone P; Pavarino LF; Zabawa C J Electrocardiol; 2005 Oct; 38(4 Suppl):131-7. PubMed ID: 16226088 [TBL] [Abstract][Full Text] [Related]
12. The role of canine superficial ventricular muscle fibers in endocardial impulse distribution. Myerburg RJ; Gelband H; Nilsson K; Castellanos A; Morales AR; Bassett AL Circ Res; 1978 Jan; 42(1):27-35. PubMed ID: 338194 [TBL] [Abstract][Full Text] [Related]
13. A model study of volume conductor effects on endocardial and intracavitary potentials. Khoury DS; Rudy Y Circ Res; 1992 Sep; 71(3):511-25. PubMed ID: 1499104 [TBL] [Abstract][Full Text] [Related]
14. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure]. Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475 [TBL] [Abstract][Full Text] [Related]
15. Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry. Clark JW; Greco EC; Harman TL CRC Crit Rev Bioeng; 1978 Nov; 3(1):1-22. PubMed ID: 310379 [TBL] [Abstract][Full Text] [Related]
16. 'The electrical spiral of the heart': its role in the helical continuum. The hypothesis of the anisotropic conducting matrix. Coghlan HC; Coghlan AR; Buckberg GD; Cox JL Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S178-87. PubMed ID: 16563785 [TBL] [Abstract][Full Text] [Related]
17. A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue. Fischer G; Tilg B; Modre R; Huiskamp GJ; Fetzer J; Rucker W; Wach P Ann Biomed Eng; 2000; 28(10):1229-43. PubMed ID: 11144984 [TBL] [Abstract][Full Text] [Related]
18. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Roberts DE; Scher AM Circ Res; 1982 Mar; 50(3):342-51. PubMed ID: 7060230 [TBL] [Abstract][Full Text] [Related]
19. Variations in the functional electrical coupling between the subendocardial Purkinje and ventricular layers of the canine left ventricle. Rawling DA; Joyner RW; Overholt ED Circ Res; 1985 Aug; 57(2):252-61. PubMed ID: 4017197 [TBL] [Abstract][Full Text] [Related]
20. Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations. Colli Franzone P; Guerri L; Rovida S J Math Biol; 1990; 28(2):121-76. PubMed ID: 2319210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]