These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 711719)

  • 1. Solute transport through crosslinked poly (2-hydroxyethyl methacrylate) membrane.
    Lee KH; Jee JG; Jhon MS; Ree T
    J Bioeng; 1978 Jun; 2(3-4):269-78. PubMed ID: 711719
    [No Abstract]   [Full Text] [Related]  

  • 2. Transport properties of hydrolyzed polyacrylonitrile.
    Dabrovskà L; Praus R; Stoy V; Vacìk J
    J Biomed Mater Res; 1978 Sep; 12(5):591-7. PubMed ID: 701297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels.
    Peppas NA; Moynihan HJ; Lucht LM
    J Biomed Mater Res; 1985 Apr; 19(4):397-411. PubMed ID: 4055823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of anti-tumor drugs through membranes from hydrophilic methacrylate gels.
    Drobník J; Spacek P; Wichterle O
    J Biomed Mater Res; 1974 Jan; 8(1):45-51. PubMed ID: 4620631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport through crosslinked poly(2-hydroxyethyl methacrylate) hydrogel membranes.
    Ratner BD; Miller IF
    J Biomed Mater Res; 1973 Jul; 7(4):353-67. PubMed ID: 4725707
    [No Abstract]   [Full Text] [Related]  

  • 6. Involvement of fractal geometry on solute permeation through porous poly (2-hydroxyethyl methacrylate) membranes.
    Yanagawa F; Onuki Y; Morishita M; Takayama K
    J Control Release; 2006 Jan; 110(2):395-399. PubMed ID: 16332400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progestin permeation through polymer membranes III: Polymerization solvent effect on progesterone permeation through hydrogel membranes.
    Zentner GM; Cardinal JR; Gregonis DE
    J Pharm Sci; 1979 Jun; 68(6):794-5. PubMed ID: 458587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J; Grzegorczyn S; Slezak A
    Polim Med; 2007; 37(3):31-46. PubMed ID: 18251203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perm-selective dialysis membranes. I. Films based on dimethylaminoethyl methacrylate copolymers.
    Muir WM; Courtney JM; Gray RA; Ritchie PD
    J Biomed Mater Res; 1971 Sep; 5(5):415-45. PubMed ID: 5120384
    [No Abstract]   [Full Text] [Related]  

  • 10. Rapid deswelling response of poly(N-isopropylacrylamide)/poly(2-alkyl-2-oxazoline)/poly(2-hydroxyethyl methacrylate) hydrogels.
    David G; Simionescu BC; Albertsson AC
    Biomacromolecules; 2008 Jun; 9(6):1678-83. PubMed ID: 18481892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the length of crosslink chain on poly(2-hydroxyethyl methacrylate) (pHEMA) swelling and biomechanical properties.
    Mabilleau G; Stancu IC; Honoré T; Legeay G; Cincu C; Baslé MF; Chappard D
    J Biomed Mater Res A; 2006 Apr; 77(1):35-42. PubMed ID: 16345096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical characterization of microporous poly(2-hydroxyethyl methacrylate) gels.
    Migliaresi C; Nicodemo L; Nicolais L; Passerini P
    J Biomed Mater Res; 1981 May; 15(3):307-17. PubMed ID: 7348268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface crosslinking for delayed release of proxyphylline from PHEMA hydrogels.
    Wu L; Brazel CS
    Int J Pharm; 2008 Feb; 349(1-2):1-10. PubMed ID: 17825507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of permeability of FD-4 through porous poly (2-hydroxyethyl methacrylate) membrane by multiple linear regression and artificial neural network.
    Yanagawa F; Onuki Y; Morishita M; Takayama K
    Pharmazie; 2009 May; 64(5):311-5. PubMed ID: 19530441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels for encapsulation of pancreatic islet cells.
    Klomp GF; Ronel SH; Hashiguchi H; D'Andrea M; Dobelle WH
    Trans Am Soc Artif Intern Organs; 1979; 25():74-6. PubMed ID: 392886
    [No Abstract]   [Full Text] [Related]  

  • 18. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental scleral buckling with a soft xerogel implant. I. Properties of poly(hydroxyethyl acrylate) compared with gelatin and other swelling implants.
    Refojo MF; Liu HS
    Ophthalmic Surg; 1978 Dec; 9(6):43-50. PubMed ID: 745816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate).
    Bozukova D; Pagnoulle C; De Pauw-Gillet MC; Ruth N; Jérôme R; Jérôme C
    Langmuir; 2008 Jun; 24(13):6649-58. PubMed ID: 18503285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.