These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 711746)

  • 1. Structural and functional properties of the membrane binding segment of cytochrome b5.
    Dailey HA; Strittmatter P
    J Biol Chem; 1978 Nov; 253(22):8203-9. PubMed ID: 711746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonpolar peptide segment of cytochrome b5. Binding to phospholipid vesicles and identification of the fluorescent tryptophanyl residue.
    Fleming PJ; Strittmatter P
    J Biol Chem; 1978 Nov; 253(22):8198-202. PubMed ID: 711745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of COOH-terminal anionic residues in binding cytochrome b5 to phospholipid vesicles and biological membranes.
    Dailey HA; Strittmatter P
    J Biol Chem; 1981 Feb; 256(4):1677-80. PubMed ID: 7462218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b5.
    Fleming PJ; Koppel DE; Lau AL; Strittmatter P
    Biochemistry; 1979 Nov; 18(24):5458-64. PubMed ID: 518849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and partial characterization of the NH2-terminal membrane-binding domain of NADH-cytochrome b5 reductase.
    Kensil CR; Hediger MA; Ozols J; Strittmatter P
    J Biol Chem; 1983 Dec; 258(23):14656-63. PubMed ID: 6643503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological studies of the membrane-binding segment of cytochrome b5 embedded in phosphatidylcholine vesicles.
    Tajima S; Sato R
    J Biochem; 1980 Jan; 87(1):123-34. PubMed ID: 7358621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b5 on the same side of phospholipid bilayers.
    Dailey HA; Strittmatter P
    J Biol Chem; 1981 Apr; 256(8):3951-5. PubMed ID: 7217066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic cleavage of horse liver cytochrome b5. Primary structure of the heme-containing moiety.
    Ozols J; Gerard C; Nobrega FG
    J Biol Chem; 1976 Nov; 251(21):6767-74. PubMed ID: 977596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topography of the membrane-binding domain of cytochrome b5 in lipids by Fourier-transform infrared spectroscopy.
    Holloway PW; Buchheit C
    Biochemistry; 1990 Oct; 29(41):9631-7. PubMed ID: 2176852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid-protein interactions in membrane models. Fluorescence polarization study of cytochrome b5-phospholipids complexes.
    Faucon JF; Dufourcq J; Lussan C; Bernon R
    Biochim Biophys Acta; 1976 Jun; 436(2):283-94. PubMed ID: 6065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ.
    de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM
    Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro membrane-inserted conformation of the cytochrome b(5) tail.
    Hanlon MR; Begum RR; Newbold RJ; Whitford D; Wallace BA
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):117-24. PubMed ID: 11062064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipoprotein A-II: chemical synthesis and biophysical properties of three peptides corresponding to fragments in the amino-terminal half.
    Chen TC; Sparrow JT; Gotto AM; Morrisett JD
    Biochemistry; 1979 Apr; 18(8):1617-22. PubMed ID: 218625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "b5-like" domain from chicken-liver sulfite oxidase: a new case of common ancestral origin with liver cytochrome b5 and bakers' yeast cytochrome b2 core.
    Guiard B; Lederer F
    Eur J Biochem; 1977 Mar; 74(1):181-90. PubMed ID: 404144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity.
    Datta G; Epand RF; Epand RM; Chaddha M; Kirksey MA; Garber DW; Lund-Katz S; Phillips MC; Hama S; Navab M; Fogelman AM; Palgunachari MN; Segrest JP; Anantharamaiah GM
    J Biol Chem; 2004 Jun; 279(25):26509-17. PubMed ID: 15075321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent structure of the membranous segment of horse cytochrome b5. Chemical cleavage of the native hemoprotein.
    Ozols J; Gerard C
    J Biol Chem; 1977 Dec; 252(23):8549-53. PubMed ID: 562879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes.
    Kleinfeld AM; Lukacovic MF
    Biochemistry; 1985 Apr; 24(8):1883-90. PubMed ID: 4016089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.