These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 711750)

  • 1. Regulation of active amino acid transport by growth-related changes in membrane potential in a human fibroblast.
    Villereal ML; Cook JS
    J Biol Chem; 1978 Nov; 253(22):8257-62. PubMed ID: 711750
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of the membrane potential in serum-stimulated uptake of amino acid in a diploid human fibroblast.
    Vilereal ML; Cook JS
    J Supramol Struct; 1977; 6(2):179-89. PubMed ID: 909311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of extracellular potassium on amino acid transport and membrane potential in fetal human fibroblasts.
    Bussolati O; Laris PC; Longo N; Dall'Asta V; Franchi-Gazzola R; Guidotti GG; Gazzola GC
    Biochim Biophys Acta; 1986 Jan; 854(2):240-50. PubMed ID: 3942729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation.
    Lever JE
    J Supramol Struct; 1977; 6(1):103-24. PubMed ID: 197316
    [No Abstract]   [Full Text] [Related]  

  • 5. Transport of alpha-aminoisobutyrate by cells and membrane vesicles of Pseudomonas fluorescens.
    Stephenson MC; Midgley M; Dawes EA
    Biochim Biophys Acta; 1978 Jun; 509(3):519-36. PubMed ID: 26404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of membrane vesicles in transport studies.
    Lever JE
    CRC Crit Rev Biochem; 1980 Jan; 7(3):187-246. PubMed ID: 6243082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexity in valinomycin effects on amino acid transport.
    De Cespedes C; Christensen HN
    Biochim Biophys Acta; 1974 Feb; 339(1):139-45. PubMed ID: 4851127
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats.
    Fehlmann M; Le Cam A; Kitabgi P; Rey JF; Freychet P
    J Biol Chem; 1979 Jan; 254(2):401-7. PubMed ID: 83992
    [No Abstract]   [Full Text] [Related]  

  • 9. Reconstitution and characterization of a sodium-stimulated active aminoisobutyric acid transport system derived from partially purified plasma membranes from mouse fibroblasts transformed by simian virus 40: comparison of reconstituted vesicles with native membrane vesicles.
    Nishino H; Tillotson LG; Schiller RM; Inui KI; Isselbacher KJ
    Arch Biochem Biophys; 1980 Aug; 203(1):428-36. PubMed ID: 6250493
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of amino acid and glucose transport activity expressed in isolated membranes from untransformed and SV 40-transformed mouse fibroblasts.
    Lever JE
    J Cell Physiol; 1976 Dec; 89(4):779-87. PubMed ID: 188848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal effects of cellular amino acids on Na+-dependent amino acid transport in Ehrlich cells.
    Johnstone RM; Laris PC
    Biochim Biophys Acta; 1980 Jul; 599(2):715-30. PubMed ID: 7407111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of microtubular inhibitors on transport of alpha-aminoisobutyric acid. Inhibition of uphill transport without changes in transmembrane gradients of Na+, K+, or H+.
    Goldman ID; Fyfe JM; Bowen D; Loftfield S; Schafer JA
    Biochim Biophys Acta; 1977 Jun; 467(2):185-91. PubMed ID: 18176
    [No Abstract]   [Full Text] [Related]  

  • 13. Uptake of alpha-aminoisobutyric acid and phosphate by membrane vesicles derived from growing and quiescent fibroblasts.
    Nilsen-Hamilton M; Hamilton RT
    J Cell Physiol; 1976 Dec; 89(4):795-800. PubMed ID: 188850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of active alpha-aminoisobutyric acid transport expressed in membrane vesicles from mouse fibroblasts.
    Lever JE
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2614-8. PubMed ID: 183203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells.
    Colombini M; Johnstone RM
    J Membr Biol; 1974; 18(3-4):315-34. PubMed ID: 4138476
    [No Abstract]   [Full Text] [Related]  

  • 16. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE
    Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993
    [No Abstract]   [Full Text] [Related]  

  • 17. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake.
    Lever JE
    J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane function in differentiating skeletal muscle cells. I. Kinetic analysis of amino acid transport.
    Grove BK; Stockdale FE
    Dev Biol; 1978 Sep; 66(1):142-50. PubMed ID: 751833
    [No Abstract]   [Full Text] [Related]  

  • 19. Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus. Comparison of transport properties of whole cells and membrane vesicles.
    Inui KI; Tillotson LG; Isselbacher KJ
    Biochim Biophys Acta; 1980 Jun; 598(3):616-27. PubMed ID: 6248112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid transport by membrane vesicles of virally transformed and nontransformed cells: effects of sodium gradient and cell density.
    Parnes JR; Garvey TQ; Isselbacher KJ
    J Cell Physiol; 1976 Dec; 89(4):789-94. PubMed ID: 188849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.