These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7117533)

  • 1. Role of diffusion of substrates on the apparent behaviour of immobilized malate dehydrogenase.
    Arrio-Dupont M; Coulet PR
    FEBS Lett; 1982 Jul; 143(2):279-82. PubMed ID: 7117533
    [No Abstract]   [Full Text] [Related]  

  • 2. Coupled reaction of immobilized aspartate aminotransferase and malate dehydrogenase. A plausible model for the cellular behaviour of these enzymes.
    Arrio-Dupont M; Coulet PR; Gautheron DC
    Biochim Biophys Acta; 1985 May; 829(1):58-68. PubMed ID: 3995045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the activity of immobilized enzymes, I. Diffusional limitation.
    Müller J; Pfleiderer G
    Hoppe Seylers Z Physiol Chem; 1980 May; 361(5):675-80. PubMed ID: 7429423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspartate aminotransferase immobilized on collagen films. Activity of dissociated subunits.
    Arrio-Dupont M; Coulet PR
    Biochem Biophys Res Commun; 1979 Jul; 89(2):345-52. PubMed ID: 486166
    [No Abstract]   [Full Text] [Related]  

  • 5. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase.
    Beeckmans S; Kanarek L
    Eur J Biochem; 1981 Jul; 117(3):527-35. PubMed ID: 7285903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of microenvironmental compartmentation. An evaluation of the influence of restricted diffusion, exclusion effects, and enzyme proximity on the overall efficiency of the sequential two-enzyme system malate dehydrogenase--citrate synthase in its soluble and immobilized form.
    Koch-Schmidt AC; Mattiasson B; Mosbach K
    Eur J Biochem; 1977 Nov; 81(1):71-8. PubMed ID: 590271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some kinetic characteristics of immobilized protomers and native dimers of mitochondrial malate dehydrogenase: an examination of the enzyme mechanism.
    DuVal G; Swaisgood HE; Horton HR
    Biochemistry; 1985 Apr; 24(8):2067-72. PubMed ID: 4016101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of dehydrogenases. III. Malate dehydrogenases.
    Müller J; Klein C
    Biochim Biophys Acta; 1982 Sep; 707(1):133-41. PubMed ID: 7138874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study on the stability of immobilized halophilic and non-halophilic malate dehydrogenases at various ionic strengths.
    Koch-Schmidt AC; Mosbach K; Werber MM
    Eur J Biochem; 1979 Oct; 100(1):213-8. PubMed ID: 488091
    [No Abstract]   [Full Text] [Related]  

  • 10. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malate dehydrogenase, anticooperative NADH, and L-malate binding in ternary complexes with Supernatant pig heart enzyme.
    Mueggler PA; Dahlquist FW; Wolfe RG
    Biochemistry; 1975 Jul; 14(15):3490-7. PubMed ID: 167827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the kinetics of cardiac cytosolic malate dehydrogenase and comparative analysis of cytosolic and mitochondrial isoforms.
    Dasika SK; Vinnakota KC; Beard DA
    Biophys J; 2015 Jan; 108(2):420-30. PubMed ID: 25606689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of reduced and oxidized nicotinamide adenine dinucleotide to pig heart supernatant malate dehydrogenase.
    Johnson RE; Rupley JA
    Biochemistry; 1979 Aug; 18(16):3611-6. PubMed ID: 224914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malate dehydrogenase of the cytosol. Preparation and reduced nicotinamide-adenine dinucleotide-binding studies.
    Lodola A; Spragg SP; Holbrook JJ
    Biochem J; 1978 Mar; 169(3):577-88. PubMed ID: 206258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic determination of malate dehydrogenase isozymes.
    Bernstein LH; Grisham MB
    J Mol Cell Cardiol; 1978 Oct; 10(10):931-44. PubMed ID: 722795
    [No Abstract]   [Full Text] [Related]  

  • 16. [Regulatory role of carbon dioxide in malate dehydrogenase reaction].
    Shevchenko MI
    Ukr Biokhim Zh (1978); 1980; 52(3):309-12. PubMed ID: 6770525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turnover of malate-dehydrogenase isozymes in rabbit liver and heart.
    Dölken G; Leisner E; Pette D
    Eur J Biochem; 1974 Sep; 47(2):333-42. PubMed ID: 4213516
    [No Abstract]   [Full Text] [Related]  

  • 18. Nylon polyethyleneimine microcapsules for immobilizing multienzymes with soluble dextran-NAD+ for the continuous recycling of the microencapsulated dextran-NAD+.
    Grunwald J; Chang TM
    Biochem Biophys Res Commun; 1978 Mar; 81(2):565-70. PubMed ID: 208528
    [No Abstract]   [Full Text] [Related]  

  • 19. [Single cycles of direct and reverse enzymatic reaction illustrated by malate dehydrogenase].
    Bliumenfel'd LA; Pleshanov PG
    Biofizika; 1986; 31(5):760-3. PubMed ID: 3778953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of immobilized aspartate aminotransferase and immobilized aspartate aminotransferase-malate dehydrogenase coupled system to micro-assay of L-aspartic acid.
    Ikeda SI; Sumi Y; Fukui S
    FEBS Lett; 1974 Oct; 47(2):295-8. PubMed ID: 4473381
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.