These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 7118135)
1. Depletion and recovery of ATP in V79 cells with exposure to inhibitors of glycolysis and oxidative phosphorylation. Marden LL; Crawford CR; Bryant RE In Vitro; 1982 Jun; 18(6):550-6. PubMed ID: 7118135 [TBL] [Abstract][Full Text] [Related]
2. Multiple controls on the intracellular trapping of uridine. Stein WD; Klein A Biochim Biophys Acta; 1983 Feb; 762(1):94-101. PubMed ID: 6830868 [TBL] [Abstract][Full Text] [Related]
3. ATP depletion by iodoacetate and cyanide in renal distal tubular cells. Lash LH; Tokarz JJ; Chen Z; Pedrosi BM; Woods EB J Pharmacol Exp Ther; 1996 Jan; 276(1):194-205. PubMed ID: 8558430 [TBL] [Abstract][Full Text] [Related]
4. Late steady increase in cytosolic Ca2+ preceding hypoxic injury in hepatocytes. Brecht M; Brecht C; De Groot H Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):399-402. PubMed ID: 1575684 [TBL] [Abstract][Full Text] [Related]
5. Paradoxical potentiation by low extracellular Ca2+ of acute chemical anoxic neuronal injury in cerebellar granule cell culture. Verity MA; Torres M; Sarafian T Mol Chem Neuropathol; 1991 Dec; 15(3):217-33. PubMed ID: 1687239 [TBL] [Abstract][Full Text] [Related]
6. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors. Hilf R; Murant RS; Narayanan U; Gibson SL Cancer Res; 1986 Jan; 46(1):211-7. PubMed ID: 3940191 [TBL] [Abstract][Full Text] [Related]
7. Suppression of Na+ influx in ATP-depleted hepatocytes. Kawanishi T; Uneyama C; Toyoda K; Ohno Y; Takanaka A; Takahashi M Life Sci; 1995; 57(4):355-61. PubMed ID: 7603308 [TBL] [Abstract][Full Text] [Related]
8. Glucose loading during primary culture has opposite effects on the viability of hepatocytes exposed to potassium cyanide and to iodoacetic acid. Shiroyama K; Moriwaki K; Kusunoki S; Saeki N; Yuge O Metabolism; 2001 Mar; 50(3):342-8. PubMed ID: 11230789 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of glycolytic and oxidative metabolism blockers on the Na-K pump in erythrocytes of the frog, Rana temporaria. Agalakova NI; Lapin AV; Gusev GP J Comp Physiol B; 1997 Nov; 167(8):576-81. PubMed ID: 9404018 [TBL] [Abstract][Full Text] [Related]
10. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions. Plagemann PG; Wohlhueter RM; Kraupp M Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962 [TBL] [Abstract][Full Text] [Related]
11. ATP uptake by mouse lymphoma cells. De Castro MF; Ayad SR Anticancer Res; 1982; 2(1-2):41-5. PubMed ID: 6180674 [TBL] [Abstract][Full Text] [Related]
12. The energy dependence of detergent resistance in Enterobacter cloacae: a likely requirement for ATP rather than a proton gradient or a membrane potential. Aspedon A; Nickerson KW Can J Microbiol; 1994 Mar; 40(3):184-91. PubMed ID: 8012906 [TBL] [Abstract][Full Text] [Related]
13. An assessment of rat photoreceptor sensitivity to mitochondrial blockade. Winkler BS; Dang L; Malinoski C; Easter SS Invest Ophthalmol Vis Sci; 1997 Jul; 38(8):1569-77. PubMed ID: 9224285 [TBL] [Abstract][Full Text] [Related]
14. Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood-brain barrier. Hurst RD; Azam S; Hurst A; Clark JB Brain Res; 2001 Mar; 894(2):181-8. PubMed ID: 11251191 [TBL] [Abstract][Full Text] [Related]
15. Isoflurane preserves adenosine triphosphate levels in anoxic isolated rat hepatocytes by stimulating glycolytic adenosine triphosphate formation. Matsushita M; Ohashi I; Becker GL; Pohorecki R Anesth Analg; 1996 Jun; 82(6):1261-7. PubMed ID: 8638802 [TBL] [Abstract][Full Text] [Related]
16. Glycolytic and oxidative metabolic contributions to potassium ion transport in rat cerebral cortex. Rosenthal M; Sick TJ Can J Physiol Pharmacol; 1992; 70 Suppl():S165-9. PubMed ID: 1295667 [TBL] [Abstract][Full Text] [Related]
17. Release of adenosine from pig aortic endothelial cells during hypoxia and metabolic inhibition. Shryock JC; Rubio R; Berne RM Am J Physiol; 1988 Feb; 254(2 Pt 2):H223-9. PubMed ID: 3344813 [TBL] [Abstract][Full Text] [Related]
18. Metabolic recovery of isolated adult rat cardiomyocytes after energy depletion: existence of an ATP threshold? Bonz A; Siegmund B; Ladilov Y; Vahl CF; Piper HM J Mol Cell Cardiol; 1998 Oct; 30(10):2111-9. PubMed ID: 9799663 [TBL] [Abstract][Full Text] [Related]
19. Biochemical and structural changes in cultured heart cells induced by metabolic inhibition. Murphy E; LeFurgey A; Lieberman M Am J Physiol; 1987 Nov; 253(5 Pt 1):C700-6. PubMed ID: 3688218 [TBL] [Abstract][Full Text] [Related]
20. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Marín-Hernández A; Ruiz-Azuara L; Moreno-Sánchez R Toxicol Appl Pharmacol; 2006 Sep; 215(2):208-17. PubMed ID: 16580038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]