These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7118584)
21. [Microspectrophotometric study of biogenic amines in ganglions of the central nervous system of Crepidula fornicata (Phil.)]. Catania R C R Acad Hebd Seances Acad Sci D; 1978 Sep; 287(6):643-6. PubMed ID: 103642 [TBL] [Abstract][Full Text] [Related]
22. Accumulation of laminin and microglial cells at sites of injury and regeneration in the central nervous system of the leech. Masuda-Nakagawa LM; Muller KJ; Nicholls JG Proc Biol Sci; 1990 Sep; 241(1302):201-6. PubMed ID: 1979445 [TBL] [Abstract][Full Text] [Related]
23. Fluorescent microscopy of the 5HT- and catecholamine-containing cells in the central nervous system of the leech Hirudo medicinalis. Marsden CA; Kerkut GA Comp Biochem Physiol; 1969 Dec; 31(6):851-62. PubMed ID: 5308458 [No Abstract] [Full Text] [Related]
24. Structure of the leech nerve cord: distribution of neurons and organization of fiber pathways. Fernandez J J Comp Neurol; 1978 Jul; 180(1):165-91. PubMed ID: 348729 [TBL] [Abstract][Full Text] [Related]
25. Histochemical fluorescence of tissue and brain monoamines: results in 18 minutes using the sucrose-phosphate-glyoxylic acid (SPG) method. de la Torre JC; Surgeon JW Neuroscience; 1976 Dec; 1(6):451-3. PubMed ID: 11370236 [TBL] [Abstract][Full Text] [Related]
26. [On the significance of the fluorescent neurons in the leech Hirudo medicinalis]. Bianchi S Ann Endocrinol (Paris); 1969; 30(4):545-8. PubMed ID: 5366868 [No Abstract] [Full Text] [Related]
27. Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Björklund A; Lindvall O; Svensson LA Histochemie; 1972; 32(2):113-31. PubMed ID: 5079517 [No Abstract] [Full Text] [Related]
28. An improved approach to histofluorescence using the SPG method for tissue monoamines. De la Torre JC J Neurosci Methods; 1980 Oct; 3(1):1-5. PubMed ID: 6164878 [TBL] [Abstract][Full Text] [Related]
29. Interactions between adjacent ganglia bring about the bilaterally alternating differentiation of RAS and CAS neurons in the leech nerve cord. Blair SS; Martindale MQ; Shankland M J Neurosci; 1990 Oct; 10(10):3183-93. PubMed ID: 2213140 [TBL] [Abstract][Full Text] [Related]
30. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells. Roshchina VV J Fluoresc; 2016 May; 26(3):1029-43. PubMed ID: 27056187 [TBL] [Abstract][Full Text] [Related]
31. Localization of catecholamines in the buccal ganglia of Aplysia californica. Rathouz MM; Kirk MD Brain Res; 1988 Aug; 458(1):170-5. PubMed ID: 3208096 [TBL] [Abstract][Full Text] [Related]
32. Biogenic amines in the brain of the honeybee, Apis mellifera. Mercer AR; Mobbs PG; Davenport AP; Evans PD Cell Tissue Res; 1983; 234(3):655-77. PubMed ID: 6420063 [TBL] [Abstract][Full Text] [Related]
33. Monoaminergic neurons in the nervous system of crustaceans. Aramant R; Elofsson R Cell Tissue Res; 1976 Jul; 170(2):231-51. PubMed ID: 954056 [TBL] [Abstract][Full Text] [Related]
34. Localization of monoamine fluorescence in the stomatogastric nervous system of lobsters. Kushner PD; Maynard EA Brain Res; 1977 Jun; 129(1):13-28. PubMed ID: 871924 [TBL] [Abstract][Full Text] [Related]
35. A modification of the glyoxylic acid induced histofluorescence technique for demonstration of catecholamines and serotonin in tissues of Aplysia californica. Tritt SH; Lowe IP; Byrne JH Brain Res; 1983 Jan; 259(1):159-62. PubMed ID: 6824930 [TBL] [Abstract][Full Text] [Related]
36. Monoamines in the brain of the lancelet, Branchiostoma lanceolatum. A fluorescence-histochemical and electron-microscopical investigation. Obermüller-Wilén H; van Veen T Cell Tissue Res; 1981; 221(2):245-56. PubMed ID: 7307051 [TBL] [Abstract][Full Text] [Related]
37. A rapid, simple and sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid-induced fluorescence. II. A detailed description of methodology. Bloom FE; Battensberg EL J Histochem Cytochem; 1976 Apr; 24(4):561-71. PubMed ID: 1270793 [TBL] [Abstract][Full Text] [Related]
38. Distribution and developmental expression of octopamine-immunoreactive neurons in the central nervous system of the leech. Gilchrist LS; Klukas KA; Jellies J; Rapus J; Eckert M; Mesce KA J Comp Neurol; 1995 Mar; 353(3):451-63. PubMed ID: 7751442 [TBL] [Abstract][Full Text] [Related]
39. Antibody staining reveals novel aspects of segmentation within the leech central nervous system. Flanagan T; Schley C; Zipser B Brain Res; 1985 Oct; 345(1):147-52. PubMed ID: 3904919 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous use of retrograde fluorescent tracers and fluorescence histochemistry for convenient and precise mapping of monoaminergic projections and collateral arrangements in the CNS. Björklund A; Skagerberg G J Neurosci Methods; 1979 Oct; 1(3):261-77. PubMed ID: 544971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]