These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 7118827)
21. Energetics of tetracycline efflux system encoded by Tn10 in Escherichia coli. Kaneko M; Yamaguchi A; Sawai T FEBS Lett; 1985 Dec; 193(2):194-8. PubMed ID: 3905438 [TBL] [Abstract][Full Text] [Related]
22. [Hybrid plasmid pBS251 containing genes for n-alkane degradation]. Andreeva AL; Boronin AM Mol Gen Mikrobiol Virusol; 1985 Nov; (11):11-6. PubMed ID: 3025683 [TBL] [Abstract][Full Text] [Related]
23. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. Yamaguchi A; Udagawa T; Sawai T J Biol Chem; 1990 Mar; 265(9):4809-13. PubMed ID: 2156856 [TBL] [Abstract][Full Text] [Related]
24. L-malate transport and proton symport in vesicles prepared from Pseudomonas putida. Agbanyo FR; Moses G; Taylor NF Biochem Cell Biol; 1986 Nov; 64(11):1190-4. PubMed ID: 3030368 [TBL] [Abstract][Full Text] [Related]
25. Active efflux of bile salts by Escherichia coli. Thanassi DG; Cheng LW; Nikaido H J Bacteriol; 1997 Apr; 179(8):2512-8. PubMed ID: 9098046 [TBL] [Abstract][Full Text] [Related]
26. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Tauch A; Götker S; Pühler A; Kalinowski J; Thierbach G Plasmid; 2002 Sep; 48(2):117-29. PubMed ID: 12383729 [TBL] [Abstract][Full Text] [Related]
27. The tetracycline efflux protein encoded by the tet(K) gene from Staphylococcus aureus is a metal-tetracycline/H+ antiporter. Yamaguchi A; Shiina Y; Fujihira E; Sawai T; Noguchi N; Sasatsu M FEBS Lett; 1995 May; 365(2-3):193-7. PubMed ID: 7781778 [TBL] [Abstract][Full Text] [Related]
28. Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifier Pseudomonas sp. strain JR 12. Barak Y; van Rijn J Appl Environ Microbiol; 2000 Dec; 66(12):5236-40. PubMed ID: 11097896 [TBL] [Abstract][Full Text] [Related]
29. [Expression of the genome of Mu-like phage D3112 specific for Pseudomonas aeruginosa in Escherichia coli and Pseudomonas putida cells]. Plotnikova TG; Kulakov LA; Eremenko EN; Fedorova TV; Krylov VN Genetika; 1982 Jul; 18(7):1075-84. PubMed ID: 6811373 [TBL] [Abstract][Full Text] [Related]
30. Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400. Master ER; McKinlay JJ; Stewart GR; Mohn WW Can J Microbiol; 2005 May; 51(5):399-404. PubMed ID: 16088335 [TBL] [Abstract][Full Text] [Related]
31. Uptake of methylamine and methanol by Pseudomonas sp. strain AM1. Bellion E; Kent ME; Aud JC; Alikhan MY; Bolbot JA J Bacteriol; 1983 Jun; 154(3):1168-73. PubMed ID: 6304007 [TBL] [Abstract][Full Text] [Related]
32. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. McMurry LM; Cullinane JC; Petrucci RE; Levy SB Antimicrob Agents Chemother; 1981 Sep; 20(3):307-13. PubMed ID: 7030198 [TBL] [Abstract][Full Text] [Related]
33. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori. Falsafi T; Ehsani A; Niknam V Indian J Med Microbiol; 2009; 27(4):335-40. PubMed ID: 19736403 [TBL] [Abstract][Full Text] [Related]
34. Transformation of Pseudomonas putida and Escherichia coli with plasmid-linked drug-resistance factor DNA. Chakrabarty AM; Mylroie JR; Friello DA; Vacca JG Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3647-51. PubMed ID: 1103151 [TBL] [Abstract][Full Text] [Related]
35. Resistance plasmids in Pseudomonas cepacia 4G9. Williams JA; Yeggy JP; Field CC; Markovetz AJ J Bacteriol; 1979 Dec; 140(3):1017-22. PubMed ID: 391795 [TBL] [Abstract][Full Text] [Related]
36. Ofloxacin-resistant Pseudomonas aeruginosa mutants with elevated drug extrusion across the inner membrane. Lei Y; Sato K; Nakae T Biochem Biophys Res Commun; 1991 Aug; 178(3):1043-8. PubMed ID: 1651710 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity. Barros F; Kaczorowski GJ J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614 [TBL] [Abstract][Full Text] [Related]
38. Characterization of a novel L-serine transport system in Escherichia coli. Hama H; Shimamoto T; Tsuda M; Tsuchiya T J Bacteriol; 1988 May; 170(5):2236-9. PubMed ID: 3129404 [TBL] [Abstract][Full Text] [Related]
39. Resolution and reconstitution of active transport of calcium by a protein(s) from Mycobacterium phlei. Lee SH; Kalra VK; Brodie AF J Biol Chem; 1979 Aug; 254(15):6861-4. PubMed ID: 378992 [TBL] [Abstract][Full Text] [Related]
40. Transport of glycine-betaine by Listeria monocytogenes. Patchett RA; Kelly AF; Kroll RG Arch Microbiol; 1994; 162(3):205-10. PubMed ID: 7979875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]