BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 7119025)

  • 1. Fibronectin inhibits morphological changes in cultures of vascular smooth muscle cells.
    Brennan MJ; Millis AJ; Fritz KE
    J Cell Physiol; 1982 Aug; 112(2):284-90. PubMed ID: 7119025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural alterations in fibronectin correlated with morphological changes in smooth muscle cells.
    Brennan MJ; Millis AJ; Mann D; Fritz KE
    Dev Biol; 1983 Jun; 97(2):391-7. PubMed ID: 6852370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro expression of a 38,000 dalton heparin-binding glycoprotein by morphologically differentiated smooth muscle cells.
    Millis AJ; Hoyle M; Kent L
    J Cell Physiol; 1986 Jun; 127(3):366-72. PubMed ID: 3086326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clusterin regulates vascular smooth muscle cell nodule formation and migration.
    Millis AJ; Luciani M; McCue HM; Rosenberg ME; Moulson CL
    J Cell Physiol; 2001 Feb; 186(2):210-9. PubMed ID: 11169458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clusterin (Apo J) regulates vascular smooth muscle cell differentiation in vitro.
    Moulson CL; Millis AJ
    J Cell Physiol; 1999 Sep; 180(3):355-64. PubMed ID: 10430175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivated human arterial smooth muscle displays heterogeneous pattern of growth and phenotypic variation.
    Björkerud S
    Lab Invest; 1985 Sep; 53(3):303-10. PubMed ID: 3897707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial heparan sulfate is necessary but not sufficient for control of vascular smooth muscle cell growth.
    Ettenson DS; Koo EW; Januzzi JL; Edelman ER
    J Cell Physiol; 2000 Jul; 184(1):93-100. PubMed ID: 10825238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a Mr = 38,000 protein from differentiating smooth muscle cells.
    Millis AJ; Hoyle M; Reich E; Mann DM
    J Biol Chem; 1985 Mar; 260(6):3754-61. PubMed ID: 3972846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models.
    Fillinger MF; Sampson LN; Cronenwett JL; Powell RJ; Wagner RJ
    J Surg Res; 1997 Feb; 67(2):169-78. PubMed ID: 9073564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of cellular and plasma fibronectins into smooth muscle cell extracellular matrix in vitro.
    Millis AJ; Hoyle M; Mann DM; Brennan MJ
    Proc Natl Acad Sci U S A; 1985 May; 82(9):2746-50. PubMed ID: 3887410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth, biochemistry, and morphology of isolated rabbit aortic smooth muscle cells maintained in the presence or absence of serum.
    Yau-Young AO; Shio H; Fowler S
    J Cell Physiol; 1981 Sep; 108(3):461-73. PubMed ID: 7287830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-dependent endothelial cell production of an inhibitor of smooth muscle cell growth.
    Dodge AB; Lu X; D'Amore PA
    J Cell Biochem; 1993 Sep; 53(1):21-31. PubMed ID: 8227180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atheromatous plaque macrophages produce plasminogen activator inhibitor type-1 and stimulate its production by endothelial cells and vascular smooth muscle cells.
    Tipping PG; Davenport P; Gallicchio M; Filonzi EL; Apostolopoulos J; Wojta J
    Am J Pathol; 1993 Sep; 143(3):875-85. PubMed ID: 8362983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The production and localization of laminin in cultured vascular and corneal endothelial cells.
    Gospodarowicz D; Greenburg G; Foidart JM; Savion N
    J Cell Physiol; 1981 May; 107(2):171-83. PubMed ID: 7251679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered fibronectin-dependent cell adhesion by PDGF accompanies phenotypic modulation of vascular smooth muscle cells.
    Fujio Y; Yamada F; Takahashi K; Shibata N
    Biochem Biophys Res Commun; 1993 Oct; 196(2):997-1002. PubMed ID: 7694583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in elastin-binding proteins during the phenotypic transition of rabbit arterial smooth muscle cells in primary culture.
    Yamamoto K; Aoyagi M; Yamamoto M
    Exp Cell Res; 1995 May; 218(1):339-45. PubMed ID: 7737370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-derived vascular smooth muscle cells produce angiotensin II by changing to the synthetic phenotype.
    Hu WY; Fukuda N; Ikeda Y; Suzuki R; Tahira Y; Takagi H; Matsumoto K; Kanmatsuse K; Mugishima H
    J Cell Physiol; 2003 Aug; 196(2):284-92. PubMed ID: 12811821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional interplay between interleukin-1 receptor and elastin binding protein regulates fibronectin production in coronary artery smooth muscle cells.
    Hinek A; Molossi S; Rabinovitch M
    Exp Cell Res; 1996 May; 225(1):122-31. PubMed ID: 8635505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase.
    Morla AO; Mogford JE
    Biochem Biophys Res Commun; 2000 May; 272(1):298-302. PubMed ID: 10872843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between cultured bovine arterial endothelial and smooth muscle cells; further studies on the effects of injury and modification of the consequences of injury.
    Xu CB; Stavenow L; Pessah-Rasmussen H
    Artery; 1993; 20(3):163-79. PubMed ID: 8240033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.