These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 7119585)
1. A predator prey model with age structure. Cushing JM; Saleem M J Math Biol; 1982; 14(2):231-50. PubMed ID: 7119585 [TBL] [Abstract][Full Text] [Related]
2. The effect of long time delays in predator-prey systems. Nunney L Theor Popul Biol; 1985 Apr; 27(2):202-21. PubMed ID: 4023953 [TBL] [Abstract][Full Text] [Related]
3. A note on exact solutions of two prey-predator equations. Burnside RR Bull Math Biol; 1982; 44(6):893-7. PubMed ID: 7159791 [No Abstract] [Full Text] [Related]
4. The existence of stable equilibria in Volterra predator-prey systems represented by loop graphs. Solimano F Bull Math Biol; 1985; 47(4):489-94. PubMed ID: 4084687 [No Abstract] [Full Text] [Related]
5. Age structure in predator-prey systems: intraspecific carnivore interaction, passive diffusion, and the paradox of enrichment. Smith JL; Wollkind DJ J Math Biol; 1983; 17(3):275-88. PubMed ID: 6619662 [TBL] [Abstract][Full Text] [Related]
6. Predator prey interactions with time delays. Cushing JM J Math Biol; 1976 Nov; 3(3-4):369-80. PubMed ID: 1035612 [TBL] [Abstract][Full Text] [Related]
7. Oscillations in a size-structured prey-predator model. Bhattacharya S; Martcheva M Math Biosci; 2010 Nov; 228(1):31-44. PubMed ID: 20800071 [TBL] [Abstract][Full Text] [Related]
9. A model of the predator-prey relationship. Gilpin ME Theor Popul Biol; 1974 Jun; 5(3):333-44. PubMed ID: 4460251 [No Abstract] [Full Text] [Related]
10. Multiple stable equilibria in a predator-prey system. Harrison GW Bull Math Biol; 1986; 48(2):137-48. PubMed ID: 3719152 [No Abstract] [Full Text] [Related]
11. The effects of refuges on predator-prey interactions: a reconsideration. McNair JN Theor Popul Biol; 1986 Feb; 29(1):38-63. PubMed ID: 3961711 [TBL] [Abstract][Full Text] [Related]
12. The impact of mortality on predator population size and stability in systems with stage-structured prey. Abrams PA; Quince C Theor Popul Biol; 2005 Dec; 68(4):253-66. PubMed ID: 16040071 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model with young predation. Saleem M; Siddiqui SU; Gupta V J Math Biol; 1987; 25(1):89-101. PubMed ID: 3585196 [TBL] [Abstract][Full Text] [Related]
14. The subcritical collapse of predator populations in discrete-time predator-prey models. Neubert MG; Kot M Math Biosci; 1992 Jun; 110(1):45-66. PubMed ID: 1623297 [TBL] [Abstract][Full Text] [Related]
15. Unique coevolutionary dynamics in a predator-prey system. Mougi A; Iwasa Y J Theor Biol; 2011 May; 277(1):83-9. PubMed ID: 21354181 [TBL] [Abstract][Full Text] [Related]
16. Phase transitions in predator-prey systems. Nagano S; Maeda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011915. PubMed ID: 22400599 [TBL] [Abstract][Full Text] [Related]
17. Encounters in predator-prey systems: a simple discrete model. Voit EO Biosystems; 1984; 17(1):57-63. PubMed ID: 6743794 [TBL] [Abstract][Full Text] [Related]
18. A semi-Markovian model for predator-prey interactions. Rao C; Kshirsagar AM Biometrics; 1978 Dec; 34(4):611-9. PubMed ID: 749946 [TBL] [Abstract][Full Text] [Related]
19. Fleeing to refuge: Escape decisions in the race for life. Cooper WE J Theor Biol; 2016 Oct; 406():129-36. PubMed ID: 27343624 [TBL] [Abstract][Full Text] [Related]
20. Age structure effects in predator-prey interactions. Beddington JR; Free CA Theor Popul Biol; 1976 Feb; 9(1):15-24. PubMed ID: 944955 [No Abstract] [Full Text] [Related] [Next] [New Search]