These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 7119841)
1. Intracellular analysis of synaptic mechanisms controlling spontaneous and cortically induced rhythmical jaw movements in the guinea pig. Chandler SH; Goldberg LJ J Neurophysiol; 1982 Jul; 48(1):126-38. PubMed ID: 7119841 [No Abstract] [Full Text] [Related]
2. Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig. Goldberg LJ; Chandler SH; Tal M J Neurophysiol; 1982 Jul; 48(1):110-38. PubMed ID: 7119840 [No Abstract] [Full Text] [Related]
3. Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1993 Feb; 69(2):595-608. PubMed ID: 8459288 [TBL] [Abstract][Full Text] [Related]
4. Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1986 Apr; 55(4):806-25. PubMed ID: 3517246 [TBL] [Abstract][Full Text] [Related]
5. Intracellular analysis of trigeminal motoneuron rhythmical activity during stimulation of pontomedullary reticular formation in anesthetized guinea pig. Gurahian SM; Chandler SH; Goldberg LJ J Neurophysiol; 1989 Dec; 62(6):1225-36. PubMed ID: 2600621 [TBL] [Abstract][Full Text] [Related]
6. Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1986 Apr; 55(4):826-45. PubMed ID: 3517247 [TBL] [Abstract][Full Text] [Related]
7. Resetting of cortically induced rhythmical jaw movements by stimulation of the cerebellar interpositus nucleus in the guinea pig. Katayama T; Kohase H; Nakamura Y Brain Res; 1993 Jul; 617(1):143-6. PubMed ID: 8374735 [TBL] [Abstract][Full Text] [Related]
8. Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis). Huang CS; Hiraba H; Murray GM; Sessle BJ J Neurophysiol; 1989 Mar; 61(3):635-50. PubMed ID: 2709104 [TBL] [Abstract][Full Text] [Related]
9. Synaptic basis of orbital cortically induced rhythmical masticatory activity of trigeminal motoneurons in immobilized cats. Kubo Y; Enomoto S; Nakamura Y Brain Res; 1981 Dec; 230(1-2):97-110. PubMed ID: 7317793 [TBL] [Abstract][Full Text] [Related]
10. Synaptic bases of cortically-induced rhythmical hypoglossal motoneuronal activity in the cat. Sahara Y; Hashimoto N; Kato M; Nakamura Y Neurosci Res; 1988 Jun; 5(5):439-52. PubMed ID: 3399148 [TBL] [Abstract][Full Text] [Related]
11. Modulation of cortically induced rhythmical jaw movements by stimulation of the red nucleus in the rat. Satoh Y; Ishizuka K; Murakami T Brain Res; 2006 May; 1087(1):114-22. PubMed ID: 16616053 [TBL] [Abstract][Full Text] [Related]
12. Cortically induced masticatory rhythm and its modification by tonic peripheral inputs in immolbilized cats. Nakamura Y; Kubo Y; Nozaki S; Takatori M Bull Tokyo Med Dent Univ; 1976 Jun; 23(2):101-7. PubMed ID: 1070411 [TBL] [Abstract][Full Text] [Related]
13. An iontophoretic analysis of the pharmacologic mechanisms responsible for trigeminal motoneuronal discharge during masticatory-like activity in the guinea pig. Katakura N; Chandler SH J Neurophysiol; 1990 Feb; 63(2):356-69. PubMed ID: 1968966 [TBL] [Abstract][Full Text] [Related]
14. The effects of a glycine antagonist (strychnine) on cortically induced rhythmical jaw movements in the anesthetized guinea pig. Chandler SH; Nielsen SA; Goldberg LJ Brain Res; 1985 Jan; 325(1-2):181-6. PubMed ID: 2983826 [TBL] [Abstract][Full Text] [Related]
15. The role of medial bulbar reticular neurons in the orbital cortically induced masticatory rhythm in cats. Nakamura Y; Enomoto S; Kato M Brain Res; 1980 Nov; 202(1):207-12. PubMed ID: 7427737 [TBL] [Abstract][Full Text] [Related]
16. Cortically induced masticatory rhythm in masseter motoneurons after blocking inhibition by strychnine and tetanus toxin. Enomoto S; Katakura N; Sunada T; Katayama T; Hirose Y; Ishiwata Y; Nakamura Y Neurosci Res; 1987 Jun; 4(5):396-412. PubMed ID: 3670746 [TBL] [Abstract][Full Text] [Related]
17. Brain-stem perturbations during cortically evoked rhythmical jaw movements: effects of activation of brain-stem loci on jaw muscle cycle characteristics. Chandler SH; Tal M J Neurosci; 1987 Feb; 7(2):463-72. PubMed ID: 3819820 [TBL] [Abstract][Full Text] [Related]
18. Evidence for pattern generator control of the effects of spindle afferent input during rhythmical jaw movements. Goldberg LJ; Chandler SH Can J Physiol Pharmacol; 1981 Jul; 59(7):707-12. PubMed ID: 6459151 [TBL] [Abstract][Full Text] [Related]
19. Anatomical organization of descending cortical projections orchestrating the patterns of cortically induced rhythmical jaw muscle activity in guinea pigs. Kato T; Seki S; Higashiyama M; Masuda Y; Kitamura S; Yoshida A Neurosci Res; 2015 Oct; 99():34-45. PubMed ID: 26031605 [TBL] [Abstract][Full Text] [Related]
20. Two types of rhythmical jaw movements evoked by stimulation of the rat cortex. Sasamoto K; Zhang G; Iwasaki M Shika Kiso Igakkai Zasshi; 1990 Feb; 32(1):57-68. PubMed ID: 2134864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]