These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7119841)

  • 41. Intracellular analysis of synaptic potentials induced in trigeminal jaw-closer motoneurons by pontomesencephalic reticular stimulation during sleep and wakefulness.
    Chandler SH; Nakamura Y; Chase MH
    J Neurophysiol; 1980 Aug; 44(2):372-82. PubMed ID: 7411194
    [No Abstract]   [Full Text] [Related]  

  • 42. Differentiation of the neural pathways mediating cortically induced and dopaminergic activation of the central pattern generator (CPG) for rhythmical jaw movements in the anesthetized guinea pig.
    Chandler SH; Goldberg LJ
    Brain Res; 1984 Dec; 323(2):297-301. PubMed ID: 6525515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Some brain stem neuronal mechanism responsible for bilateral coordination of jaw movement.
    Nakamura Y
    Bull Tokyo Med Dent Univ; 1974 Aug; 21 Suppl(0):31-4. PubMed ID: 4528873
    [No Abstract]   [Full Text] [Related]  

  • 44. Effects of neck muscle activities during rhythmic jaw movements by stimulation of the medial vestibular nucleus in rats.
    Satoh Y; Yajima E; Nagamine Y; Ishizuka K; Murakami T
    Brain Res Bull; 2011 Nov; 86(5-6):447-53. PubMed ID: 21907266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activity of the rat pontomedullary reticular neurons related to rhythmical jaw movements.
    Ohta M; Sasamoto K; Kishikawa N; Kuraoka N
    Fukuoka Igaku Zasshi; 1999 Nov; 90(11):403-17. PubMed ID: 10624060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Modulation of the jaw muscle activity during the rhythmical jaw movement by stimulation of the cortical masticatory area and amygdala in the rabbit].
    Furuta A; Murakami T
    Shigaku; 1989 Aug; 77(2):607-17. PubMed ID: 2489314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice.
    Nakamura Y; Katakura N; Nakajima M
    J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Synaptic basis of cortically induced rhythmical activity of hypoglossal motoneurons in cats].
    Sahara Y
    Kokubyo Gakkai Zasshi; 1984 Dec; 51(4):656-66. PubMed ID: 6598188
    [No Abstract]   [Full Text] [Related]  

  • 49. Cortical area inducing chewing-like rhythmical jaw movements and its connections with thalamic nuclei in guinea pigs.
    Isogai F; Kato T; Fujimoto M; Toi S; Oka A; Adachi T; Maeda Y; Morimoto T; Yoshida A; Masuda Y
    Neurosci Res; 2012 Dec; 74(3-4):239-47. PubMed ID: 23142519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Neuromuscular mechanisms controlling mastication with special reference to jaw movements (3). Rhythm formation and control of masticatory jaw movements].
    Nakamura Y
    Shikai Tenbo; 1984 Mar; 63(3):477-92. PubMed ID: 6591473
    [No Abstract]   [Full Text] [Related]  

  • 51. Synaptic transmission from the supratrigeminal region to jaw-closing and jaw-opening motoneurons in developing rats.
    Nakamura S; Inoue T; Nakajima K; Moritani M; Nakayama K; Tokita K; Yoshida A; Maki K
    J Neurophysiol; 2008 Oct; 100(4):1885-96. PubMed ID: 18753330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [A comparative study between cortically induced fictive mastication and actual mastication in acute and chronic rabbits].
    Liu ZJ; Wang HY
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1994 Sep; 29(5):305-8, 320. PubMed ID: 7743868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of orofacial sensory input on spontaneously occurring and apomorphine-induced rhythmical jaw movements in the anesthetized guinea pig.
    Chandler SH; Goldberg LJ; Lambert RW
    Neurosci Lett; 1985 Jan; 53(1):45-9. PubMed ID: 3991049
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Roles of cerebral cortex in control of masticatory movements].
    Nakamura Y
    Kokubyo Gakkai Zasshi; 1999 Dec; 66(4):311-20. PubMed ID: 10655698
    [No Abstract]   [Full Text] [Related]  

  • 55. [Synaptic potentials of the motor neurons of the digastric muscle].
    Gura EV; LimanskiÄ­ IuP; PiliavskiÄ­ AI
    Neirofiziologiia; 1971; 3(1):52-7. PubMed ID: 4363528
    [No Abstract]   [Full Text] [Related]  

  • 56. Synaptic mechanism of central inhibition.
    Kostyuk PG
    Prog Brain Res; 1968; 22():67-85. PubMed ID: 4297203
    [No Abstract]   [Full Text] [Related]  

  • 57. Methods used to compare monosynaptic and multisynaptic projection of spindle afferents to jaw elevator motoneurones of different types [proceedings].
    Appenteng K; Morimoto T; Taylor A
    J Physiol; 1979 Aug; 293():13P. PubMed ID: 159355
    [No Abstract]   [Full Text] [Related]  

  • 58. Changes in cortically induced rhythmic jaw movements after lesioning of the red nucleus in rats.
    Satoh Y; Ishizuka K; Murakami T
    Brain Res; 2007 Aug; 1165():60-70. PubMed ID: 17662263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Nerve cell plasticity during learning].
    Gusel'nikov VI; Pivovarov AS
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1980; (4):66-81. PubMed ID: 6156714
    [No Abstract]   [Full Text] [Related]  

  • 60. Glutamate activates neuronal discharges and rhythmical jaw movements in the rat.
    Ohta M; Sasamoto K; Kuraoka N; Nishimuta K
    Fukuoka Igaku Zasshi; 1999 Nov; 90(11):418-33. PubMed ID: 10624061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.