These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 7119841)
61. [Corticopyramidal and corticoextrapyramidal synaptic influences on the lumbar motoneurons of the monkey]. Tamarova ZA; Shapobalov AI; Karamian OA; Kurchavyi GG Neirofiziologiia; 1972; 4(6):587-96. PubMed ID: 4633210 [No Abstract] [Full Text] [Related]
62. [Neuromechanism of reaction of the masticatory muscles]. Hongo T Kokubyo Gakkai Zasshi; 1969 Mar; 36(1):43. PubMed ID: 4896128 [No Abstract] [Full Text] [Related]
63. Neuronal activity related to spontaneous and capsaicin-induced rhythmical jaw movements in the rat. Ohta M; Sasamoto K; Kobayashi J Comp Biochem Physiol A Mol Integr Physiol; 1998 Feb; 119(2):645-51. PubMed ID: 11249014 [TBL] [Abstract][Full Text] [Related]
65. Synaptic modulation contributes to firing pattern generation in jaw motor neurons during rejection of seaweed in Aplysia kurodai. Nagahama T; Narusuye K; Arai H J Neurophysiol; 1999 Nov; 82(5):2579-89. PubMed ID: 10561428 [TBL] [Abstract][Full Text] [Related]
66. Control of trigeminal motoneurons from the cerebellar interpositus nucleus of the guinea pig. Katayama T; Hashimoto N; Ishiwata Y; Ono T; Nakamura Y J Neurophysiol; 1992 Jun; 67(6):1528-42. PubMed ID: 1629762 [TBL] [Abstract][Full Text] [Related]
67. Short latency jaw movement produced by low intensity intracortical microstimulation of the precentral face area in monkeys. Clark RW; Luschei ES Brain Res; 1974 Apr; 70(1):144-7. PubMed ID: 4207048 [No Abstract] [Full Text] [Related]
68. Potentials evoked in vitro in preparations from the mammalian brain. Yamamoto C; McIlwain H Nature; 1966 Jun; 210(5040):1055-6. PubMed ID: 5914903 [No Abstract] [Full Text] [Related]
69. Feeding behavior in mammals: corticobulbar projection is reorganized during conversion from sucking to chewing. Iriki A; Nozaki S; Nakamura Y Brain Res Dev Brain Res; 1988 Dec; 44(2):189-96. PubMed ID: 3224424 [TBL] [Abstract][Full Text] [Related]
70. Activity of neurons in the lower precentral cortex during voluntary and rhythmical jaw movements in the monkey. Lund JP; Lamarre Y Exp Brain Res; 1974 Feb; 19(3):282-99. PubMed ID: 4206672 [No Abstract] [Full Text] [Related]
71. Membrane potentials in guinea-pig cerebral cortex slices in vitro. Their dependence on substrate and oxygen. The effect of clupein and of ganglioside preparations. HILLMAN HH J Neurochem; 1961 Dec; 8():257-61. PubMed ID: 13907460 [No Abstract] [Full Text] [Related]
73. Biochemical and physiological differentiation during morphogenesis. XIII. Functional maturation of the motor cortex of the fetal guinea pig as judged by the appearance of muscular responses to electrical stimulation of the cortex. KIMEL VM; KAVALER F J Comp Neurol; 1951 Apr; 94(2):257-65. PubMed ID: 14832388 [No Abstract] [Full Text] [Related]
74. The yield of synaptosomes from the cerebral cortex of guinea pigs estimated by a polystyrene bead "tagging" procedure. Clementi F; Whittaker VP; Sheridan MN Z Zellforsch Mikrosk Anat; 1966; 72(1):126-38. PubMed ID: 5973650 [No Abstract] [Full Text] [Related]
75. The influence of hypothalamic stimulation on cortically induced movements and on action potentials of the cortex. MURPHY JP; GELLHORN E J Neurophysiol; 1945 Nov; 8():341-64. PubMed ID: 21004988 [No Abstract] [Full Text] [Related]
76. The form and growth of stellate cells in the cortex of the guinea-pig. PETERS HG; BADEMAN H J Anat; 1963 Jan; 97(Pt 1):111-7. PubMed ID: 13942726 [No Abstract] [Full Text] [Related]
77. The influence of alterations in posture of the limbs on cortically induced movements. GELLHORN E Brain; 1948 Mar; 71(1):26-33. PubMed ID: 18868743 [No Abstract] [Full Text] [Related]
78. A limited range of vagus nerve stimulation intensities produce motor cortex reorganization when delivered during training. Morrison RA; Danaphongse TT; Pruitt DT; Adcock KS; Mathew JK; Abe ST; Abdulla DM; Rennaker RL; Kilgard MP; Hays SA Behav Brain Res; 2020 Aug; 391():112705. PubMed ID: 32473844 [TBL] [Abstract][Full Text] [Related]
79. Involvement of histaminergic inputs in the jaw-closing reflex arc. Gemba C; Nakayama K; Nakamura S; Mochizuki A; Inoue M; Inoue T J Neurophysiol; 2015 Jun; 113(10):3720-35. PubMed ID: 25904711 [TBL] [Abstract][Full Text] [Related]
80. Evolution and development of dual ingestion systems in mammals: notes on a new thesis and its clinical implications. Alberts JR; Pickler RH Int J Pediatr; 2012; 2012():730673. PubMed ID: 23028391 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]