These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7119842)

  • 1. Two representations of the hand in area 4 of a primate. II. Somatosensory input organization.
    Strick PL; Preston JB
    J Neurophysiol; 1982 Jul; 48(1):150-9. PubMed ID: 7119842
    [No Abstract]   [Full Text] [Related]  

  • 2. Sorting of somatosensory afferent information in primate motor cortex.
    Strick PL; Preston JB
    Brain Res; 1978 Nov; 156(2):364-8. PubMed ID: 101284
    [No Abstract]   [Full Text] [Related]  

  • 3. Input-output organization of the primate motor cortex.
    Strick PL; Preston JB
    Adv Neurol; 1983; 39():321-7. PubMed ID: 6660099
    [No Abstract]   [Full Text] [Related]  

  • 4. Two representations of the hand in area 4 of a primate. I. Motor output organization.
    Strick PL; Preston JB
    J Neurophysiol; 1982 Jul; 48(1):139-49. PubMed ID: 6288884
    [No Abstract]   [Full Text] [Related]  

  • 5. Somatotopic organization of the lateral sulcus of owl monkeys: area 3b, S-II, and a ventral somatosensory area.
    Cusick CG; Wall JT; Felleman DJ; Kaas JH
    J Comp Neurol; 1989 Apr; 282(2):169-90. PubMed ID: 2496153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Afferent projections to the motor cortex--a hodological review].
    Mizuno N
    No To Shinkei; 1985 Jun; 37(6):529-43. PubMed ID: 3899142
    [No Abstract]   [Full Text] [Related]  

  • 7. The nature of the afferent pathways conveying short-latency inputs to primate motor cortex.
    Jones EG
    Adv Neurol; 1983; 39():263-85. PubMed ID: 6318531
    [No Abstract]   [Full Text] [Related]  

  • 8. Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections.
    Huang CS; Sirisko MA; Hiraba H; Murray GM; Sessle BJ
    J Neurophysiol; 1988 Mar; 59(3):796-818. PubMed ID: 2835448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of sensorimotor deficits after rostral versus caudal lesions in the primary motor cortex hand representation.
    Friel KM; Barbay S; Frost SB; Plautz EJ; Hutchinson DM; Stowe AM; Dancause N; Zoubina EV; Quaney BM; Nudo RJ
    J Neurophysiol; 2005 Aug; 94(2):1312-24. PubMed ID: 15872062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional organization of tactile inputs from the hand in the cuneate nucleus and its relationship to organization in the somatosensory cortex.
    Xu J; Wall JT
    J Comp Neurol; 1999 Aug; 411(3):369-89. PubMed ID: 10413773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimated magnitude and interactions of cortico-motoneuronal and Ia afferent input to spinal motoneurones of the human hand.
    Ziemann U; Ilić TV; Alle H; Meintzschel F
    Neurosci Lett; 2004 Jun; 364(1):48-52. PubMed ID: 15193754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of tactile signals in primate supplementary motor area.
    Romo R; Ruiz S; Crespo P; Zainos A; Merchant H
    J Neurophysiol; 1993 Dec; 70(6):2690-4. PubMed ID: 8120609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):747-58. PubMed ID: 1578252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of correlated afferent input on motor cortical representations in humans.
    Schabrun SM; Ridding MC
    Exp Brain Res; 2007 Oct; 183(1):41-9. PubMed ID: 17602215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The organization of neocortex and caudate nucleus interconnections in simians].
    Khasabov GA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(4):811-20. PubMed ID: 4450790
    [No Abstract]   [Full Text] [Related]  

  • 16. Progressive changes in somatosensory cortical maps in 6-week-old kittens cord-transected at T12.
    McKinley PA; Swyter E
    Brain Res; 1989 Apr; 484(1-2):378-82. PubMed ID: 2713696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor mechanisms: the role of the pyramidal system in motor control.
    Brooks VB; Stoney SD
    Annu Rev Physiol; 1971; 33():337-92. PubMed ID: 4951052
    [No Abstract]   [Full Text] [Related]  

  • 18. [The effect of electrical stimulation of the sensomotor cortex on the posterior root potentials and depolarization of the primary afferents of the spinal cord].
    Ignatov IuD
    Fiziol Zh SSSR Im I M Sechenova; 1973 Jun; 59(6):861-9. PubMed ID: 4786220
    [No Abstract]   [Full Text] [Related]  

  • 19. [The non-uniform effect of different regions of the caudate nucleus on the impulse activity of sensomotor cortex neurons].
    Arushanian EB; Belozertsev IuA
    Biull Eksp Biol Med; 1973 Mar; 75(1):3-6. PubMed ID: 4778658
    [No Abstract]   [Full Text] [Related]  

  • 20. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct.
    Nudo RJ; Wise BM; SiFuentes F; Milliken GW
    Science; 1996 Jun; 272(5269):1791-4. PubMed ID: 8650578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.