BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7120119)

  • 1. Antinociceptive activity and toxicity of meperidine and normeperidine in mice.
    Umans JG; Inturrisi CE
    J Pharmacol Exp Ther; 1982 Oct; 223(1):203-6. PubMed ID: 7120119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonism of the convulsant effects of heroin, d-propoxyphene, meperidine, normeperidine and thebaine by naloxone in mice.
    Gilbert PE; Martin WR
    J Pharmacol Exp Ther; 1975 Mar; 192(3):538-41. PubMed ID: 1120955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A characterization of the antinociception produced by intracerebroventricular injection of 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate in mice.
    Welch SP; Dewey WL
    J Pharmacol Exp Ther; 1986 Nov; 239(2):320-6. PubMed ID: 3095536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat.
    Fürst S; Riba P; Friedmann T; Tímar J; Al-Khrasani M; Obara I; Makuch W; Spetea M; Schütz J; Przewlocki R; Przewlocka B; Schmidhammer H
    J Pharmacol Exp Ther; 2005 Feb; 312(2):609-18. PubMed ID: 15383636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice.
    Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F
    J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats.
    Gmerek DE; Cowan A; Woods JH
    J Pharmacol Exp Ther; 1986 Jan; 236(1):8-13. PubMed ID: 3941402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of behavioral effects of morphine, meperidine and normeperidine by naloxone and by morphine tolerance.
    Witkin JM; Leander JD; Dykstra LA
    J Pharmacol Exp Ther; 1983 May; 225(2):275-83. PubMed ID: 6842391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the antinociceptive activity of calcitonin gene-related peptide alone and in combination with morphine: correlation to 45Ca++ uptake by synaptosomes.
    Welch SP; Cooper CW; Dewey WL
    J Pharmacol Exp Ther; 1988 Jan; 244(1):28-33. PubMed ID: 3257266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence.
    Wells JL; Bartlett JL; Ananthan S; Bilsky EJ
    J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Na(+), K(+)-ATPase in morphine-induced antinociception.
    Masocha W; Horvath G; Agil A; Ocana M; Del Pozo E; Szikszay M; Baeyens JM
    J Pharmacol Exp Ther; 2003 Sep; 306(3):1122-8. PubMed ID: 12756273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification.
    Cichewicz DL; Martin ZL; Smith FL; Welch SP
    J Pharmacol Exp Ther; 1999 May; 289(2):859-67. PubMed ID: 10215664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent expression of two pharmacologically distinct supraspinal mu analgesic systems in genetically different mouse strains.
    Pick CG; Nejat RJ; Pasternak GW
    J Pharmacol Exp Ther; 1993 Apr; 265(1):166-71. PubMed ID: 8386234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New analgesics derived from the phencyclidine analogue thienylcyclidine.
    al-Deeb OA
    Arzneimittelforschung; 1996 May; 46(5):505-8. PubMed ID: 8737636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analgesic effects of intraventricular morphine and enkephalins in nondependent and morphine-dependent rats.
    Brady LS; Holtzman SG
    J Pharmacol Exp Ther; 1982 Jul; 222(1):190-7. PubMed ID: 7201020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociceptive effects of ketamine-opioid combinations in the mouse tail flick test.
    Dambisya YM; Lee TL
    Methods Find Exp Clin Pharmacol; 1994 Apr; 16(3):179-84. PubMed ID: 8046951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrally mediated inhibition of small intestinal transit and motility by morphine in the rat.
    Galligan JJ; Burks TF
    J Pharmacol Exp Ther; 1983 Aug; 226(2):356-61. PubMed ID: 6875849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rat/mouse hemokinin-1, a mammalian tachykinin peptide, markedly potentiates the antinociceptive effects of morphine administered at the peripheral and supraspinal level.
    Fu CY; Yang Q; Wang KR; Kong ZQ; Chen Q; Wang R
    Behav Brain Res; 2006 Jun; 170(2):293-301. PubMed ID: 16621052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antinociception produced by oral, subcutaneous or intrathecal administration of SC-39566, an opioid dipeptide arylalkylamide, in the rodent.
    Hammond DL; Stapelfeld A; Drower EJ; Savage MA; Tam L; Mazur RH
    J Pharmacol Exp Ther; 1994 Feb; 268(2):607-15. PubMed ID: 8113971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antinociceptive activity of Vitex-negundo Linn leaf extract.
    Gupta RK; Tandon VR
    Indian J Physiol Pharmacol; 2005 Apr; 49(2):163-70. PubMed ID: 16170984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antinociceptive effect of centrally administered endothelin-1 and endothelin-3 in the mouse.
    Nikolov R; Semkova I; Maslarova J; Moyanova S
    Methods Find Exp Clin Pharmacol; 1993 Sep; 15(7):447-53. PubMed ID: 8255123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.