These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7120652)

  • 1. Length-passive tension relationships in cerebral and peripheral arteries isolated from spontaneously hypertensive and normotensive rats.
    Toda N; Okunishi H; Miyazaki M
    Jpn Circ J; 1982 Oct; 46(10):1088-94. PubMed ID: 7120652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional changes in cerebral arteries from spontaneously hypertensive rats.
    Winquist RJ; Bohr DF
    Hypertension; 1983; 5(3):292-7. PubMed ID: 6840819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of 5-hydroxytryptamine receptors mediating contractions in basilar arteries from stroke-prone spontaneously hypertensive rats.
    Nishimura Y
    Br J Pharmacol; 1996 Mar; 117(6):1325-1333. PubMed ID: 8882632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium sensitivity and agonist-induced calcium sensitization in small arteries of young and adult spontaneously hypertensive rats.
    Shaw LM; Ohanian J; Heagerty AM
    Hypertension; 1997 Sep; 30(3 Pt 1):442-8. PubMed ID: 9314430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of pressure-activated channel in intact vascular endothelium of stroke-prone spontaneously hypertensive rats.
    Köhler R; Grundig A; Brakemeier S; Rothermund L; Distler A; Kreutz R; Hoyer J
    Am J Hypertens; 2001 Jul; 14(7 Pt 1):716-21. PubMed ID: 11465659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channels in the basilar artery during chronic hypertension.
    Kitazono T; Heistad DD; Faraci FM
    Hypertension; 1993 Nov; 22(5):677-81. PubMed ID: 8225527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-containing nerves around blood vessels of stroke-prone spontaneously hypertensive rats.
    Lee RM; Nagahama M; McKenzie R; Daniel EE
    Hypertension; 1988 Feb; 11(2 Pt 2):I117-20. PubMed ID: 2450064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats.
    Salomone S; Morel N; Godfraind T
    Br J Pharmacol; 1997 Jul; 121(6):1051-8. PubMed ID: 9249238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in vasopressin-induced contraction of basilar arteries from stroke-prone spontaneously-hypertensive rats (SP-SHR) and control Wistar-Kyoto rats (WKY).
    Hermsmeyer K; Rusch NJ
    J Hypertens Suppl; 1984 Dec; 2(3):S423-5. PubMed ID: 6443711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxant response of isolated basilar arteries to calcitonin gene-related peptide in stroke-prone spontaneously hypertensive rats.
    Nishimura Y; Usui H; Suzuki A; Kajimoto N; Yamanishi Y
    Jpn J Pharmacol; 1992 Jul; 59(3):333-8. PubMed ID: 1279255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxant effects of calcitonin gene-related peptide on isolated small renal arteries in stroke-prone spontaneously hypertensive rats.
    Gao Y; Nishimura Y; Suzuki A; Yoshida K
    J Smooth Muscle Res; 1994 Feb; 30(1):9-19. PubMed ID: 8049580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats.
    Kolias TJ; Chai S; Webb RC
    Am J Hypertens; 1993 Jun; 6(6 Pt 1):528-33. PubMed ID: 8343237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of increased sensitivity to cerebral ischemia following carotid artery occlusion in stroke-prone spontaneously hypertensive rats: importance of genetic factors.
    Suno M; Kakihana M; Shibota M; Nagaoka A
    Stroke; 1981; 12(2):246-50. PubMed ID: 7233474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High potassium diets protect against dysfunction of endothelial cells in stroke-prone spontaneously hypertensive rats.
    Sugimoto T; Tobian L; Ganguli MC
    Hypertension; 1988 Jun; 11(6 Pt 2):579-85. PubMed ID: 3260581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of large and small cerebral arteries in chronic hypertension.
    Hajdu MA; Baumbach GL
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H1027-33. PubMed ID: 8160806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat.
    Arribas SM; Gordon JF; Daly CJ; Dominiczak AF; McGrath JC
    Stroke; 1996 Jun; 27(6):1118-22; discussion 1122-3. PubMed ID: 8650724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased sympathetic innervation in the cerebral and mesenteric arteries of hypertensive rats.
    Mangiarua EI; Lee RM
    Can J Physiol Pharmacol; 1990 Apr; 68(4):492-9. PubMed ID: 2328451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myogenic tone in mesenteric arteries from spontaneously hypertensive rats.
    Izzard AS; Bund SJ; Heagerty AM
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H1-6. PubMed ID: 8769727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats.
    Sampson AK; Andrews KL; Graham D; McBride MW; Head GA; Thomas MC; Chin-Dusting JP; Dominiczak AF; Jennings GL
    Hypertension; 2014 Dec; 64(6):1376-83. PubMed ID: 25201895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural remodeling of resistance arteries in uremic hypertension.
    New DI; Chesser AM; Thuraisingham RC; Yaqoob MM
    Kidney Int; 2004 May; 65(5):1818-25. PubMed ID: 15086922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.