These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 7120652)
21. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP-sensitive K+ channels in chronically hypertensive rats. Sobey CG; Heistad DD; Faraci FM Stroke; 1997 Feb; 28(2):392-6; discussion 396-7. PubMed ID: 9040696 [TBL] [Abstract][Full Text] [Related]
22. Association and cosegregation of stroke with impaired endothelium-dependent vasorelaxation in stroke prone, spontaneously hypertensive rats. Volpe M; Iaccarino G; Vecchione C; Rizzoni D; Russo R; Rubattu S; Condorelli G; Ganten U; Ganten D; Trimarco B; Lindpaintner K J Clin Invest; 1996 Jul; 98(2):256-61. PubMed ID: 8755632 [TBL] [Abstract][Full Text] [Related]
23. Downregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension. Seki T; Goto K; Kiyohara K; Kansui Y; Murakami N; Haga Y; Ohtsubo T; Matsumura K; Kitazono T Hypertension; 2017 Jan; 69(1):143-153. PubMed ID: 27872234 [TBL] [Abstract][Full Text] [Related]
24. Functional activity of Ca2+-dependent K+ channels is increased in basilar artery during chronic hypertension. PaternĂ² R; Heistad DD; Faraci FM Am J Physiol; 1997 Mar; 272(3 Pt 2):H1287-91. PubMed ID: 9087603 [TBL] [Abstract][Full Text] [Related]
25. Relationship between blood pressure and smooth muscle tone in aortae of hypertensive rats: roles of [Ca2+]. Sasaki F; Osugi S; Shimamura K; Sunano S J Smooth Muscle Res; 1993 Jun; 29(3):69-79. PubMed ID: 8274801 [TBL] [Abstract][Full Text] [Related]
26. Comparison of endothelium-dependent and -independent tension oscillation in aortae of stroke-prone spontaneously hypertensive rats and Wistar Kyoto rats. Sunano S; Sasaki F; Osugi S; Shimamura K J Smooth Muscle Res; 1994 Aug; 30(4):135-45. PubMed ID: 7749200 [TBL] [Abstract][Full Text] [Related]
27. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983 [TBL] [Abstract][Full Text] [Related]
28. Relaxation of the aorta during hypoxia is impaired in chronically hypertensive rats. Taguchi H; Faraci FM; Kitazono T; Heistad DD Hypertension; 1995 Apr; 25(4 Pt 2):735-8. PubMed ID: 7536713 [TBL] [Abstract][Full Text] [Related]
29. Factors involved in the time course of response to acetylcholine in mesenteric arteries from spontaneously hypertensive rats. Sunano S; Nakahira T; Kawata K; Sekiguchi F Eur J Pharmacol; 2001 Jun; 423(1):47-55. PubMed ID: 11438306 [TBL] [Abstract][Full Text] [Related]
30. Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. McGill JK; Gallagher L; Carswell HV; Irving EA; Dominiczak AF; Macrae IM Stroke; 2005 Jan; 36(1):135-41. PubMed ID: 15569870 [TBL] [Abstract][Full Text] [Related]
31. Chemical analysis of vascular collagen in stroke-prone spontaneously hypertensive rats. Yamori Y; Ohta K Jpn Circ J; 1979 Oct; 43(10):963-9. PubMed ID: 513269 [TBL] [Abstract][Full Text] [Related]
32. Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Tesfamariam B; Halpern W Hypertension; 1988 May; 11(5):440-4. PubMed ID: 3366477 [TBL] [Abstract][Full Text] [Related]
33. Effect of sympathetic nerves on composition and distensibility of cerebral arterioles in rats. Baumbach GL; Heistad DD; Siems JE J Physiol; 1989 Sep; 416():123-40. PubMed ID: 2607446 [TBL] [Abstract][Full Text] [Related]
34. [Effect of bilateral common carotid artery ligation on prostaglandin levels (TXA2, PGI2) in spontaneously hypertensive rats (SHRSP, SHRSR) and normotensive rats (WKY)]. Katayama Y; Suzuki S; Shimizu J; Inamura K; Sugimoto S; Terashi A No To Shinkei; 1986 Jun; 38(6):571-8. PubMed ID: 3524627 [TBL] [Abstract][Full Text] [Related]
35. New establishment of hypertensive diabetic animal models: neonatally streptozotocin-treated spontaneously hypertensive rats. Sato T; Nara Y; Note S; Yamori Y Metabolism; 1987 Aug; 36(8):731-7. PubMed ID: 3600285 [TBL] [Abstract][Full Text] [Related]
36. Biophysical aspects of resistance vessels studied in spontaneous and renal hypertensive rats. Mulvany MJ Acta Physiol Scand Suppl; 1988; 571():129-37. PubMed ID: 3239405 [No Abstract] [Full Text] [Related]
37. L-arginine restores dilator responses of the basilar artery to acetylcholine during chronic hypertension. Kitazono T; Faraci FM; Heistad DD Hypertension; 1996 Apr; 27(4):893-6. PubMed ID: 8613265 [TBL] [Abstract][Full Text] [Related]
38. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties. Bund SJ Clin Sci (Lond); 2001 Oct; 101(4):385-93. PubMed ID: 11566076 [TBL] [Abstract][Full Text] [Related]
39. Decreased modulation by endothelium of noradrenaline-induced contractions in aorta from stroke-prone spontaneously hypertensive rats. Osugi S; Shimamura K; Sunano S Arch Int Pharmacodyn Ther; 1990; 305():86-99. PubMed ID: 2241432 [TBL] [Abstract][Full Text] [Related]
40. Orientation of arterial smooth muscle and strength of contraction of aortic strips from DOCA-hypertensive rats. Hansen TR; Dineen DX; Pullen GL Blood Vessels; 1980; 17(6):302-11. PubMed ID: 7437523 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]