These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7121059)

  • 1. A simple method for implanting electrodes in freely moving neonatal rats.
    Cherubini E; de Feo MR; Mecarelli O; Ricci G
    J Neurosci Methods; 1982 Jul; 6(1-2):175-7. PubMed ID: 7121059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of cortical and subcortical electroencephalographic events in unrestrained neonatal and infant rats.
    Snead OC; Stephens HI
    Exp Neurol; 1983 Nov; 82(2):249-69. PubMed ID: 6354741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course of the redox state potential of the cerebral cortex, developing as a reaction to implanted platinum electrodes.
    Shvets-Ténéta-Gurii TB; Mats VN; Kovchegova OB
    Neurosci Behav Physiol; 1991; 21(3):276-83. PubMed ID: 1922739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of wire leads and electrodes for use in slow wave recording in small animals.
    Cooley RK; Vanderwolf CH
    Brain Res Bull; 1978; 3(2):175-9. PubMed ID: 647416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull.
    Park AH; Lee SH; Lee C; Kim J; Lee HE; Paik SB; Lee KJ; Kim D
    ACS Nano; 2016 Feb; 10(2):2791-802. PubMed ID: 26735496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for measuring EEG in freely moving guinea pigs.
    Mumford H; Wetherell JR
    J Neurosci Methods; 2001 May; 107(1-2):125-30. PubMed ID: 11389949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electroretinogram and visual evoked potential of freely moving rats.
    Szabó-Salfay O; Pálhalmi J; Szatmári E; Barabás P; Szilágyi N; Juhász G
    Brain Res Bull; 2001 Sep; 56(1):7-14. PubMed ID: 11604242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid microprobes for chronic implantation in the cerebral cortex.
    Kisban S; Janssen P; Herwik S; Stieglitz T; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2016-9. PubMed ID: 19163089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new multielectrode for chronic recording of intracortical field potentials in cats.
    Karmos G; Molnár M; Csépe V
    Physiol Behav; 1982 Sep; 29(3):567-71. PubMed ID: 7178263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparing of two types of hippocampal rhythmical slow activity (RSA, theta) in adult rats decorticated neonatally.
    Whishaw IQ; Dyck R; Kolb B
    Brain Res Bull; 1991 Mar; 26(3):425-7. PubMed ID: 2049610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and effective process for noise reduction of multichannel cortical field potential recordings in freely moving rats.
    Shaw FZ; Yen CT; Chen RF
    J Neurosci Methods; 2003 Apr; 124(2):167-74. PubMed ID: 12706846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical electroencephalogram from subcortical electrodes rather than electrosubcorticogram.
    Jäntti V; Heikkinen E; Alahuhta S; Remes R; Suominen K
    Anesthesiology; 2008 May; 108(5):963-4; author reply 964-5. PubMed ID: 18431134
    [No Abstract]   [Full Text] [Related]  

  • 13. A glue-based, screw-free method for implantation of intra-cranial electrodes in young mice.
    Wu C; Wais M; Sheppy E; del Campo M; Zhang L
    J Neurosci Methods; 2008 Jun; 171(1):126-31. PubMed ID: 18420280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Easy construction of an improved fine wire electrode for chronic single neuron recording in freely moving animals.
    Yamamoto T
    Physiol Behav; 1987; 39(5):649-52. PubMed ID: 3588714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcutaneous recording of single neuron activity in the cerebral cortex of the monkey.
    Darian-Smith I; Durham-Smith G; Sugitani M; Heywood J; Goodwin A
    J Neurosci Methods; 1983 Nov; 9(3):253-7. PubMed ID: 6319832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording.
    BeMent SL; Wise KD; Anderson DJ; Najafi K; Drake KL
    IEEE Trans Biomed Eng; 1986 Feb; 33(2):230-41. PubMed ID: 3957372
    [No Abstract]   [Full Text] [Related]  

  • 17. [Cortical cellular activity studies by implanting electrodes in the newborn rabbit].
    Garma L; Verley R
    J Physiol (Paris); 1967; 59(5):357-76. PubMed ID: 5584622
    [No Abstract]   [Full Text] [Related]  

  • 18. A recording procedure for chronic microelectrodes in the paralyzed cat.
    Ptito M; Heaton GH; Lassonde MC; Pribram KH
    Rev Can Biol; 1976 Mar; 35(1):43-7. PubMed ID: 1273351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of cortical and hippocampal epileptiform activity in freely moving rats by means of implantable radiotelemetry.
    Bastlund JF; Jennum P; Mohapel P; Vogel V; Watson WP
    J Neurosci Methods; 2004 Sep; 138(1-2):65-72. PubMed ID: 15325113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of infant cortical synchrony is constrained by the number of recording electrodes and the recording montage.
    Tokariev A; Vanhatalo S; Palva JM
    Clin Neurophysiol; 2016 Jan; 127(1):310-323. PubMed ID: 26122070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.