These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 71221)

  • 1. The myocardial cell surface, its histochemistry, and the effect of sialic acid and calcium removal on its stucture and cellular ionic exchange.
    Frank JS; Langer GA; Nudd LM; Seraydarian K
    Circ Res; 1977 Nov; 41(5):702-14. PubMed ID: 71221
    [No Abstract]   [Full Text] [Related]  

  • 2. Sialic acid: effect of removal on calcium exchangeability of cultured heart cells.
    Langer GA; Frank JS; Nudd LM; Seraydarian K
    Science; 1976 Sep; 193(4257):1013-5. PubMed ID: 948758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of alterations in cation exchange and sarcolemmal ultrastructure produced by neuraminidase and phospholipases in cardiac cell tissue culture.
    Langer GA; Frank JS; Philipson KD
    Circ Res; 1981 Dec; 49(6):1289-99. PubMed ID: 7307245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that ruthenium red disturbs the synaptic transmission in the rat hippocampal slices through interacting with sialic acid residues.
    Wieraszko A
    Brain Res; 1986 Jul; 378(1):120-6. PubMed ID: 2427153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of ruthenium red on the kinetics of potassium loss and on the calcium levels of the rat heart, perfused with potassium-free solutions].
    Marx CH; Barlier S
    C R Seances Soc Biol Fil; 1981; 175(6):840-5. PubMed ID: 6173107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of calcium exchange, structure, and function in myocardial tissue culture.
    Langer GA; Frank JS; Nudd LM
    Am J Physiol; 1979 Aug; 237(2):H239-46. PubMed ID: 464117
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of neuraminidase on cellular calcium and contraction in cultured cardiac myocytes.
    Yee HF; Kuwata JH; Langer GA
    J Mol Cell Cardiol; 1991 Feb; 23(2):175-85. PubMed ID: 2067026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sialic acid removal modulates the myocardial and vascular activity of calcium channel ligands.
    Werner G; Addicks K; Fricke U; Klaus W; Sarram M; Gielen W
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S77-87. PubMed ID: 1722670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of cardiac cell Ca2+ permeability on sialic acid-containing sarcolemmal gangliosides.
    Marengo FD; Wang SY; Wang B; Langer GA
    J Mol Cell Cardiol; 1998 Jan; 30(1):127-37. PubMed ID: 9500871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles.
    Bers DM; Philipson KD; Nishimoto AY
    Biochim Biophys Acta; 1980 Sep; 601(2):358-71. PubMed ID: 7407175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The inhibitory effects of sodium paeonol sulfate on calcium influx in the cultured neonatal rat heart cells during calcium paradox].
    Tang JR; Shi L
    Yao Xue Xue Bao; 1991; 26(3):161-5. PubMed ID: 1957654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic basis of myocardial contractility.
    Langer GA
    Annu Rev Med; 1977; 28():13-20. PubMed ID: 324352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of sialic acid from cardiac sarcolemma does not affect contractile function in electrically stimulated guinea pig left atria.
    Harding SE; Halliday J
    Nature; 1980 Aug; 286(5775):819-21. PubMed ID: 7402355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling calcium in mammalian myocardium: its source and control.
    Langer GA; Frank JS; Tillisch JH
    Adv Cardiol; 1974; 12(0):162-73. PubMed ID: 4600367
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrolytes in myocardial infarction.
    Lehr D
    Compr Ther; 1975 Nov; 1(7):47-57. PubMed ID: 1222552
    [No Abstract]   [Full Text] [Related]  

  • 16. Biochemical properties of membranes isolated from calcium-depleted rabbit hearts.
    Lamers JM; Stinis JT; Ruigrok TJ
    Circ Res; 1984 Mar; 54(3):217-26. PubMed ID: 6321053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal lanthanum as a marker for impaired plasma membrane permeability in ischemic dog myocardium.
    Hoffstein S; Gennaro DE; Fox AC; Hirsch J; Streuli F; Weissmann G
    Am J Pathol; 1975 May; 79(2):207-18. PubMed ID: 1146960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanum probing of cell membrane permeability in the rat heart: pathological versus artefactual alterations.
    Harper IS; Williams K; Lochner A
    J Electron Microsc Tech; 1990 Apr; 14(4):357-66. PubMed ID: 2332812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca++ distribution after Na+ pump inhibition in cultured neonatal rat myocardial cells.
    Burt JM; Langer GA
    Circ Res; 1982 Nov; 51(5):543-50. PubMed ID: 6216020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking action of Ruthenium Red on cholinergic and non-cholinergic synapses: possible involvment of sialic acid-containing substrates in neurotransmission.
    Baux G; Simonneau M; Tauc L
    Brain Res; 1978 Sep; 152(3):633-8. PubMed ID: 210881
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.