These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7122136)
41. [Myocardial action potentials and myocardial energy metabolism (1)]. Sperelakis N; Vogel SM; Azuma J; Yamamura Y Nihon Rinsho; 1981 Jan; 39(1):207-16. PubMed ID: 7289052 [No Abstract] [Full Text] [Related]
42. [Energy metabolism and electron microscopic characteristics of animal cerebral cortex mitochondria in conditions of burn shock]. Sidorkina AN; Sidorkin VG Vopr Med Khim; 1974; 20(5):504-9. PubMed ID: 4456801 [No Abstract] [Full Text] [Related]
43. Insulin improves cardiac contractile function and oxygen utilization efficiency during moderate ischemia without compromising myocardial energetics. Tune JD; Mallet RT; Downey HF J Mol Cell Cardiol; 1998 Oct; 30(10):2025-35. PubMed ID: 9799656 [TBL] [Abstract][Full Text] [Related]
44. [Effect of craniocerebral hypothermia on energy metabolism of the myocardium]. Vaĭner EN Patol Fiziol Eksp Ter; 1988; (1):57-60. PubMed ID: 3362593 [No Abstract] [Full Text] [Related]
45. Simultaneous detection of high energy phosphates and metabolites of glycolysis and the Krebs cycle by HPLC. Vogt AM; Ackermann C; Noe T; Jensen D; Kübler W Biochem Biophys Res Commun; 1998 Jul; 248(3):527-32. PubMed ID: 9703959 [TBL] [Abstract][Full Text] [Related]
46. [Behavior of carbohydrate metabolism in shock following experimental head injury]. Hausdörfer J; Heller W; Junger H; Oldenkott P Med Welt; 1975 Jan; 26(2):75-8. PubMed ID: 1113662 [No Abstract] [Full Text] [Related]
47. [Effects of urinastatin on an energy metabolism disorder during shock]. Sato M; Ishikawa H; Niho T; Mizota M Nihon Yakurigaku Zasshi; 1986 Sep; 88(3):195-203. PubMed ID: 2431982 [TBL] [Abstract][Full Text] [Related]
48. [Electrophysiological characteristics and energy provision of the brain function in traumatic shock]. Nasonkin OS; Kazueva TV; Boldina IG; Kovrizhnykh EV; Kuz'mina RI Patol Fiziol Eksp Ter; 1976; (2):39-47. PubMed ID: 1024189 [No Abstract] [Full Text] [Related]
49. Determinants of myocardial oxygen consumption in fibrillating dog hearts. Comparison between normothermia and hypothermia. Yaku H; Goto Y; Ohgoshi Y; Kawaguchi O; Oga K; Oka T; Suga H J Thorac Cardiovasc Surg; 1993 Apr; 105(4):679-88. PubMed ID: 8469002 [TBL] [Abstract][Full Text] [Related]
50. Potential uremic toxins modulate energy metabolism of cardiac myocytes in vitro. Weisensee D; Schnaars Y; Schoeppe W; Bereiter-Hahn J; Löw-Friedrich I Exp Nephrol; 1997; 5(3):194-200. PubMed ID: 9208278 [TBL] [Abstract][Full Text] [Related]
51. [Organ oxygen demand in severe traumatic shock and its relationship to circulatory disorders]. Seleznev SA; Tsibin IuN; Mazurkevich GS Vestn Akad Med Nauk SSSR; 1974; (10):28-32. PubMed ID: 4450706 [No Abstract] [Full Text] [Related]
52. Beneficial actions of a free radical scavenger in traumatic shock and myocardial ischemia. Lefer AM; Araki H; Okamatsu S Circ Shock; 1981; 8(3):273-82. PubMed ID: 7249259 [TBL] [Abstract][Full Text] [Related]
53. Acute effects of the coronary vasodilator carbocromen on myocardial oxygen consumption, substrate uptake and mechanical performance in intact dogs. Vik-Mo H; Mjøs OD; Smiseth O; Riemersma RA; Oliver MF Arzneimittelforschung; 1981; 31(7):1088-91. PubMed ID: 7196756 [TBL] [Abstract][Full Text] [Related]