These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 7122515)

  • 1. Amphetamine facilitates recovery of operant response rates following motor cortex ablation in rats.
    Law WA; Ferraro DP
    Proc West Pharmacol Soc; 1982; 25():317-9. PubMed ID: 7122515
    [No Abstract]   [Full Text] [Related]  

  • 2. The relationship of amphetamine-induced anorexia and freezing under a multiple CRF-EXT operant schedule.
    Cole SO
    J Gen Psychol; 1970 Oct; 83(2d Half):163-8. PubMed ID: 5528934
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of amphetamine on differential reinforcement of low rates of responding.
    Saulsgiver KA; McClure EA; Wynne CD
    Behav Pharmacol; 2007 Mar; 18(2):119-33. PubMed ID: 17351419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to novel environmental stimuli decreases amphetamine self-administration in rats.
    Klebaur JE; Phillips SB; Kelly TH; Bardo MT
    Exp Clin Psychopharmacol; 2001 Nov; 9(4):372-9. PubMed ID: 11764013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental enrichment decreases intravenous amphetamine self-administration in rats: dose-response functions for fixed- and progressive-ratio schedules.
    Green TA; Gehrke BJ; Bardo MT
    Psychopharmacology (Berl); 2002 Aug; 162(4):373-8. PubMed ID: 12172690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats.
    Alderson HL; Latimer MP; Blaha CD; Phillips AG; Winn P
    Neuroscience; 2004; 125(2):349-58. PubMed ID: 15062978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The influence of BT-melanin on the recovery of conditioned instrumental reflexes in rats surviving after ablation of the sensorimotor cortex].
    Gevorkian OV; Meliksetian IB; Ovsepian AS; Sagiian AS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(3):384-91. PubMed ID: 16869274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microanalysis of drug effects on fixed-ratio performance in pigeons.
    Weiss B; Gott CT
    J Pharmacol Exp Ther; 1972 Feb; 180(2):189-202. PubMed ID: 5010671
    [No Abstract]   [Full Text] [Related]  

  • 9. Amphetamine and operant behavior in rats: relationship between drug effect and control response rate.
    Heffner TG; Drawbaugh RB; Zigmond MJ
    J Comp Physiol Psychol; 1974 Jun; 86(6):1031-43. PubMed ID: 4836852
    [No Abstract]   [Full Text] [Related]  

  • 10. Termination of treatment with an amphetamine-barbiturate mixture at different stages of training.
    Cooper SJ
    Act Nerv Super (Praha); 1972 Nov; 14(4):266-8. PubMed ID: 5083828
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential effects of d-amphetamine on impulsive choice in spontaneously hypertensive and Wistar-Kyoto rats.
    Hand DJ; Fox AT; Reilly MP
    Behav Pharmacol; 2009 Sep; 20(5-6):549-53. PubMed ID: 19654504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a behavioral toxicology of paint thinner.
    Colotla VA; Lorenzana-Jiménez M; Rodríguez R
    Neurobehav Toxicol; 1980; 2(1):31-6. PubMed ID: 7442918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of calcineurin inhibition and protein kinase A activation on nucleus accumbens amphetamine-produced conditioned place preference in rats.
    Gerdjikov TV; Beninger RJ
    Eur J Neurosci; 2005 Aug; 22(3):697-705. PubMed ID: 16101751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorpromazine and amphetamine effects on three operant and on four discrete trial reinforcement schedules.
    Ray OS; Bivens LW
    Psychopharmacologia; 1966; 10(1):32-43. PubMed ID: 5982981
    [No Abstract]   [Full Text] [Related]  

  • 15. Enhancement of spatial preferences by (+)-amphetamine.
    Glick SD
    Neuropharmacology; 1973 Jan; 12(1):43-7. PubMed ID: 4687275
    [No Abstract]   [Full Text] [Related]  

  • 16. Reinforcement schedules differentially affect learning in neuronal operant conditioning in rats.
    Song K; Takahashi S; Sakurai Y
    Neurosci Res; 2020 Apr; 153():62-67. PubMed ID: 31002837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of tricyclic antidepressants on performance under a differential-reinforcement-of-low-rates schedule in rats.
    McGuire PS; Seiden LS
    J Pharmacol Exp Ther; 1980 Sep; 214(3):635-41. PubMed ID: 7400965
    [No Abstract]   [Full Text] [Related]  

  • 18. Sensorimotor cortex ablation prevents H-reflex up-conditioning and causes a paradoxical response to down-conditioning in rats.
    Chen XY; Carp JS; Chen L; Wolpaw JR
    J Neurophysiol; 2006 Jul; 96(1):119-27. PubMed ID: 16598062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior.
    Ferrario CR; Robinson TE
    Eur Neuropsychopharmacol; 2007 Apr; 17(5):352-7. PubMed ID: 17029912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental modulation of the interoceptive effects of amphetamine in the rat.
    Paolone G; Palopoli M; Marrone MC; Nencini P; Badiani A
    Behav Brain Res; 2004 Jun; 152(1):149-55. PubMed ID: 15135978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.