These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7122567)

  • 1. The molecular basis of species specific cell-cell recognition in marine sponges, and a study on organogenesis during metamorphosis.
    Misevic GN; Burger MM
    Prog Clin Biol Res; 1982; 85 Pt B():193-209. PubMed ID: 7122567
    [No Abstract]   [Full Text] [Related]  

  • 2. The molecular mechanisms of the distinct calcium-dependent aggregation systems in marine sponges and corals.
    Müller WE; Dorn A; Uhlenbruck G
    Acta Histochem Suppl; 1985; 31():37-46. PubMed ID: 2862662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cell recognition: molecular aspects. Recognition and its relation to morphogenetic processes in general.
    Burger MM; Burkart W; Weinbaum G; Jumblatt J
    Symp Soc Exp Biol; 1978; 32():1-23. PubMed ID: 382416
    [No Abstract]   [Full Text] [Related]  

  • 4. Model macromolecules for cell-cell recognition: can specificity arise from two independent molecular interactions?
    Burger MM; Misevic GN; Burkart W; Jumblatt J
    Prog Clin Biol Res; 1982; 102 pt A():475-90. PubMed ID: 7167452
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular self-recognition and adhesion via proteoglycan to proteoglycan interactions as a pathway to multicellularity: atomic force microscopy and color coded bead measurements in sponges.
    Misevic GN
    Microsc Res Tech; 1999 Feb; 44(4):304-9. PubMed ID: 10098930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of a highly polyvalent glycan in the cell-binding of the aggregation factor from the marine sponge Microciona prolifera.
    Misevic GN; Burger MM
    J Cell Biochem; 1990 Aug; 43(4):307-14. PubMed ID: 2118911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Beaumont to poison ivy: marine sponge cell aggregation and the secretory basis of inflammation.
    Dunham PB; Vosshall LB; Bayer CA; Rich AM; Weissmann G
    Fed Proc; 1985 Nov; 44(14):2914-24. PubMed ID: 3932096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane involvement in cell-cell interactions: a two-component model system for cellular recognition that does not require live cells.
    Burger MM; Jumblatt J
    Soc Gen Physiol Ser; 1977; 32():155-72. PubMed ID: 333592
    [No Abstract]   [Full Text] [Related]  

  • 9. Cell adhesion and histocompatibility in sponges.
    Fernàndez-Busquets X; Burger MM
    Microsc Res Tech; 1999 Feb; 44(4):204-18. PubMed ID: 10098923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-cell recognition: specific binding of Microciona sponge aggregation factor to homotypic cells and the role of calcium ions.
    Jumblatt JE; Schlup V; Burger MM
    Biochemistry; 1980 Mar; 19(5):1038-42. PubMed ID: 7356960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards an understanding of the molecular basis of immune responses in sponges: the marine demosponge Geodia cydonium as a model.
    Müller WE; Koziol C; Müller IM; Wiens M
    Microsc Res Tech; 1999 Feb; 44(4):219-36. PubMed ID: 10098924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges.
    Jarchow J; Fritz J; Anselmetti D; Calabro A; Hascall VC; Gerosa D; Burger MM; Fernàndez-Busquets X
    J Struct Biol; 2000 Nov; 132(2):95-105. PubMed ID: 11162731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation of sponge cells: stage dependent, distinct adhesion mechanisms in Cliona celata.
    Müller WE; Zahn RK; Conrad J; Kurelec B; Uhlenbruck G
    Eur J Cell Biol; 1982 Oct; 28(2):243-50. PubMed ID: 7173224
    [No Abstract]   [Full Text] [Related]  

  • 14. The contribution of the calcium-dependent interaction of aggregation factor molecules to recognition: a system providing additional specificity forces?
    Burkart W; Burger MM
    J Supramol Struct Cell Biochem; 1981; 16(2):179-82. PubMed ID: 6170760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of cell adhesion in a morphogenetic system.
    Curtis AS; Van de Vyver G
    J Embryol Exp Morphol; 1971 Oct; 26(2):295-312. PubMed ID: 5157350
    [No Abstract]   [Full Text] [Related]  

  • 16. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction.
    Vilanova E; Coutinho CC; Mourão PA
    Glycobiology; 2009 Aug; 19(8):860-7. PubMed ID: 19395676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paleoclimate and evolution: emergence of sponges during the neoproterozoic.
    Müller WE; Wang X; Schröder HC
    Prog Mol Subcell Biol; 2009; 47():55-77. PubMed ID: 19198773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific association of the cell-aggregation molecule mediates recognition in marine sponges.
    Jarchow J; Burger MM
    Cell Adhes Commun; 1998; 6(5):405-14. PubMed ID: 10223356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metamorphosis of cinctoblastula larvae (Homoscleromorpha, porifera).
    Ereskovsky AV; Tokina DB; Bézac C; Boury-Esnault N
    J Morphol; 2007 Jun; 268(6):518-28. PubMed ID: 17427974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of experimental manipulation of pH and salinity on Cd(2+) uptake by the sponge Microciona prolifera and on sponge cell aggregation induced by Ca(2+) and Cd(2+).
    Philp RB
    Arch Environ Contam Toxicol; 2001 Oct; 41(3):282-8. PubMed ID: 11503064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.