These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 712325)

  • 21. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. II. Role of segmental swim-initiating interneurons.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):503-10. PubMed ID: 3023603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistent modification of synaptic interactions between sensory and motor nerve cells following discrete lesions in the central nervous system of the leech.
    Jansen JK; Muller KJ; Nicholls JG
    J Physiol; 1974 Oct; 242(2):289-305. PubMed ID: 4376167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioral hierarchy in the medicinal leech, Hirudo medicinalis: feeding as a dominant behavior.
    Misell LM; Shaw BK; Kristan WB
    Behav Brain Res; 1998 Jan; 90(1):13-21. PubMed ID: 9520210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Afferent connections to the fast conduction pathway in the central nervous system of the leech Hirudo medicinalis.
    Bagnoli P; Brunelli M; Magni F
    Arch Ital Biol; 1973 Feb; 111(1):58-75. PubMed ID: 18843826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal generation of the leech swimming movement.
    Stent GS; Kristan WB; Friesen WO; Ort CA; Poon M; Calabrese RL
    Science; 1978 Jun; 200(4348):1348-57. PubMed ID: 663615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative roles of the S cell network and parallel interneuronal pathways in the whole-body shortening reflex of the medicinal leech.
    Shaw BK; Kristan WB
    J Neurophysiol; 1999 Sep; 82(3):1114-23. PubMed ID: 10482731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal control of leech swimming.
    Brodfuehrer PD; Debski EA; O'Gara BA; Friesen WO
    J Neurobiol; 1995 Jul; 27(3):403-18. PubMed ID: 7673898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitory connections between motor neurons modify a centrally generated motor pattern in the leech nervous system.
    Granzow B; Kristan WB
    Brain Res; 1986 Mar; 369(1-2):321-5. PubMed ID: 3697747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The brain matters: effects of descending signals on motor control.
    Mullins OJ; Friesen WO
    J Neurophysiol; 2012 May; 107(10):2730-41. PubMed ID: 22378172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuronal factors influencing the decision to swim in the medicinal leech.
    Brodfuehrer PD; Burns A
    Neurobiol Learn Mem; 1995 Mar; 63(2):192-9. PubMed ID: 7663893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane properties and selective connexions of identified leech neurones in culture.
    Fuchs PA; Nicholls JG; Ready DF
    J Physiol; 1981 Jul; 316():203-23. PubMed ID: 7320865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex.
    Lockery SR; Kristan WB
    J Neurosci; 1990 Jun; 10(6):1816-29. PubMed ID: 2355252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-Specific Motor Efference during a Rhythmic Motor Pattern.
    Alonso I; Sanchez Merlinsky A; Szczupak L
    J Neurosci; 2020 Feb; 40(9):1888-1896. PubMed ID: 31980584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local-distributed integration by a novel neuron ensures rapid initiation of animal locomotion.
    Mullins OJ; Hackett JT; Friesen WO
    J Neurophysiol; 2011 Jan; 105(1):130-44. PubMed ID: 20980540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. I. Output connections of Tr1 and Tr2.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):489-502. PubMed ID: 3783502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output pattern.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1683-92. PubMed ID: 1479438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals.
    Günay C; Doloc-Mihu A; Lamb DG; Calabrese RL
    eNeuro; 2019; 6(4):. PubMed ID: 31270128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of a locomotory rhythm by a neural network with reccurrent cyclic inhibition.
    Friesen WO; Stent GS
    Biol Cybern; 1977 Dec; 28(1):27-40. PubMed ID: 597508
    [No Abstract]   [Full Text] [Related]  

  • 40. Multifunctional interneurons in behavioral circuits of the medicinal leech.
    Kristan WB; Wittenberg G; Nusbaum MP; Stern-Tomlinson W
    Experientia; 1988 May; 44(5):383-9. PubMed ID: 3286283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.