These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 712327)

  • 1. Axonal adaptations to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). I. Ultrastructural and electrophysiological observations on axonal accessibility.
    Skaer HL; Treherne JE; Benson JA; Moreton RB
    J Exp Biol; 1978 Oct; 76():191-204. PubMed ID: 712327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal adaptation to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). III. Adaptations to hyposmotic dilution.
    Benson JA; Treherne JE
    J Exp Biol; 1978 Oct; 76():221-35. PubMed ID: 712329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal adaptations to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). II. Effects of ionic dilution on the resting and action potentials.
    Benson JA; Treherne JE
    J Exp Biol; 1978 Oct; 76():205-19. PubMed ID: 712328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic basis of axonal excitability in an extreme euryhaline osmoconformer, the serpulid worm Mercierella enigmatica (Fauvel).
    Carlson AD; Treherne JE
    J Exp Biol; 1977 Apr; 67():205-15. PubMed ID: 894179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical interactions between the giant axons of a polychaete worm (Sabella penicillus L.).
    Mellon D; Treherne JE; Lane NJ; Harrison JB; Langley CK
    J Exp Biol; 1980 Feb; 84():119-36. PubMed ID: 6245163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of osmotic stress on the electrical properties of the axons of a marine osmoconformer (Mala squinado. brachyura: crustacea).
    Pichon Y; Treherne JE
    J Exp Biol; 1976 Dec; 65(3):553-63. PubMed ID: 1018162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perineurial and glial cells in the tick Boophilus microplus (Acarina: Ixodidae): freeze-fracture and tracer studies.
    Binnington KC; Lane NJ
    J Neurocytol; 1980 Jun; 9(3):343-62. PubMed ID: 7441296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periaxonal ensheathment of lobster giant nerve fibres as revealed by freeze-fracture and lanthanum penetration.
    Villegas GM; Sánchez F
    J Neurocytol; 1991 Jun; 20(6):504-17. PubMed ID: 1869886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure and permeability of the Schwann cell layer surrounding the giant axon of the squid.
    Brown ER; Abbott NJ
    J Neurocytol; 1993 Apr; 22(4):283-98. PubMed ID: 8478646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transglial pathway of diffusion in the Schwann sheath of the squid giant axon.
    Zwahlen MJ; Sandri C; Greeff NG
    J Neurocytol; 1988 Apr; 17(2):145-59. PubMed ID: 3204409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The water balance of a serpulid polychaete Mercierella enigmatica (Fauvel). IV. The excitability of the longitudinal muscle cells.
    Skaer HL
    J Exp Biol; 1974 Apr; 60(2):351-70. PubMed ID: 4832986
    [No Abstract]   [Full Text] [Related]  

  • 12. Macromolecular structure of axon membrane and action potential conduction in myelin deficient and myelin deficient heterozygote rat optic nerves.
    Waxman SG; Black JA; Duncan ID; Ransom BR
    J Neurocytol; 1990 Feb; 19(1):11-28. PubMed ID: 2351992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helical substructure of neurofilaments isolated from Myxicola and squid giant axons.
    Krishnan N; Kaiserman-Abramof IR; Lasek RJ
    J Cell Biol; 1979 Aug; 82(2):323-35. PubMed ID: 479304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal accessibility and adaptation to osmotic stress in an extreme osmoconformer.
    Treherne JE; Benson JA; Skaer HL
    Nature; 1977 Sep; 269(5627):430-1. PubMed ID: 909591
    [No Abstract]   [Full Text] [Related]  

  • 15. Distribution of sodium channels in chronically demyelinated spinal cord axons: immuno-ultrastructural localization and electrophysiological observations.
    Black JA; Felts P; Smith KJ; Kocsis JD; Waxman SG
    Brain Res; 1991 Mar; 544(1):59-70. PubMed ID: 1649663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons.
    Freeman AR; Reuben JP; Brandt PW; Grundfest H
    J Gen Physiol; 1966 Nov; 50(2):423-45. PubMed ID: 11526838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane specializations in the first optic neuropil of the housefly, Musca domestica L. I. Junctions between neurons.
    Chi C; Carlson SD
    J Neurocytol; 1980 Aug; 9(4):429-49. PubMed ID: 7441299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electron microscopic analysis of hippocampal neurons developing in culture: early stages in the emergence of polarity.
    Deitch JS; Banker GA
    J Neurosci; 1993 Oct; 13(10):4301-15. PubMed ID: 8410189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal adaptation to osmotic stress in Sabella penicillus L. [proceedings].
    Carlson AD; Pichon Y; Treherne JE
    J Physiol; 1977 Jul; 269(1):76P-77P. PubMed ID: 894583
    [No Abstract]   [Full Text] [Related]  

  • 20. The septum of the lateral axon of the earthworm: a thin section and freeze-fracture study.
    Kensler RW; Brink PR; Dewey MM
    J Neurocytol; 1979 Oct; 8(5):565-90. PubMed ID: 553148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.