These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7125202)

  • 1. Measurement of ketone bodies in subcellular fractions using a spectrophotometric iron-chelate assay.
    Kientsch-Engel RI; Siess EA; Wieland OH
    Anal Biochem; 1982 Jul; 123(2):270-5. PubMed ID: 7125202
    [No Abstract]   [Full Text] [Related]  

  • 2. Simultaneous determination of ketone bodies in biological samples by gas chromatographic headspace analysis.
    López-Soriano FJ; Argilés JM
    J Chromatogr Sci; 1985 Mar; 23(3):120-3. PubMed ID: 3980662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct automated assay method for serum or urine levels of ketone bodies.
    Harano Y; Ohtsuki M; Ida M; Kojima H; Harada M; Okanishi T; Kashiwagi A; Ochi Y; Uno S; Shigeta Y
    Clin Chim Acta; 1985 Sep; 151(2):177-83. PubMed ID: 4042378
    [No Abstract]   [Full Text] [Related]  

  • 4. Micro method for determination of ketone bodies by head-space gas chromatography.
    Eriksson CJ
    Anal Biochem; 1972 May; 47(1):235-43. PubMed ID: 5031116
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of dietary excess leucine on the levels of branched chain alpha-keto acids and ketone bodies in blood and the liver of rats.
    Yamada O; Shin M; Sano K; Umezawa C
    Int J Vitam Nutr Res; 1983; 53(2):192-8. PubMed ID: 6885277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of beta-hydroxybutyric acid in blood and milk by gas chromatography.
    Mee JM
    J Chromatogr; 1974 Dec; 101(2):414-6. PubMed ID: 4443402
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acyl CoA and lipid synthesis from ketone bodies by the extramitochondrial fraction of hepatoma tissue.
    Hildebrandt L; Spennetta T; Ackerman R; Elson C; Shrago E
    Biochem Biophys Res Commun; 1996 Aug; 225(1):307-12. PubMed ID: 8769135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of free oxaloacetate in ketogenesis. Derivation from the direct measurement of mitochondrial [3-hydroxybutyrate]/[acetoacetate] ratio in hepatocytes.
    Siess EA; Kientsch-Engel RI; Wieland OH
    Eur J Biochem; 1982 Jan; 121(3):493-9. PubMed ID: 7056252
    [No Abstract]   [Full Text] [Related]  

  • 10. A spectrophotometric, enzymatic assay for D-3-hydroxybutyrate that is not dependent on hydrazine.
    Brashear A; Cook GA
    Anal Biochem; 1983 Jun; 131(2):478-82. PubMed ID: 6614481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetoacetate/beta-hydroxybutyrate ratio in arterial blood and liver during and after liver ischemia--a clue to detect the viability of ischemic liver.
    Yamamoto M; Ozawa K; Isselhard W; Tobe T
    Nihon Geka Hokan; 1983 Jul; 52(4):508-19. PubMed ID: 6660989
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of theophylline administration on ketone bodies level in rat plasma and brain.
    Stefanovich V
    Arzneimittelforschung; 1983; 33(7):958-9. PubMed ID: 6684931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octanoate metabolism in the isolated perfused rat liver. I. Methodology and preliminary results.
    Bach A; Bieth N; Metais P
    Arch Sci Physiol (Paris); 1973; 27(1):55-65. PubMed ID: 4780669
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms involved in ketone body release by rat liver cells: influence of pH and bicarbonate.
    Fafournoux P; Demigné C; Rémésy C
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G200-8. PubMed ID: 3826348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of ketone bodies in blood, cerebrospinal fluid and urine.
    Göschke H
    Clin Chim Acta; 1970 May; 28(2):359-64. PubMed ID: 5447412
    [No Abstract]   [Full Text] [Related]  

  • 16. Lipogenesis from ketone bodies in perfused livers from streptozocin-induced diabetic rats.
    Freed LE; Endemann G; Tomera JF; Gavino VC; Brunengraber H
    Diabetes; 1988 Jan; 37(1):50-5. PubMed ID: 3335277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization and preferred metabolic pathway of ketone bodies for lipid synthesis by isolated rat hepatoma cells.
    Hildebrandt LA; Spennetta T; Elson C; Shrago E
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C22-7. PubMed ID: 7631749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ketogenesis in the living rat followed by 13C NMR spectroscopy.
    Cross TA; Pahl C; Oberhänsli R; Aue WP; Keller U; Seelig J
    Biochemistry; 1984 Dec; 23(26):6398-402. PubMed ID: 6529555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular distribution of hepatic copper, zinc and iron and serum ceruloplasmin in rats intoxicated by oral pyrrolizidine (Senecio) alkaloids.
    Swick RA; Cheeke PR; Buhler DR
    J Anim Sci; 1982 Dec; 55(6):1425-30. PubMed ID: 7161215
    [No Abstract]   [Full Text] [Related]  

  • 20. Regional ketone body utilization by rat brain in starvation and diabetes.
    Hawkins RA; Mans AM; Davis DW
    Am J Physiol; 1986 Feb; 250(2 Pt 1):E169-78. PubMed ID: 2937307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.