BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7126174)

  • 1. Properties of N-maleoylmethionine sulphone, a novel impermeant maleimide, and its use in the selective labelling of the erythrocyte glucose-transport system.
    Roberts SJ; Tanner MJ; Denton RM
    Biochem J; 1982 Jul; 205(1):139-45. PubMed ID: 7126174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.
    May JM
    Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impermeant maleimides. Identification of an exofacial component of the human erythrocyte hexose transport mechanism.
    Batt ER; Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7184-90. PubMed ID: 993210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of two membrane proteins containing extracellular thiol groups in Rhnull human erythrocytes.
    Ridgwell K; Roberts SJ; Tanner MJ; Anstee DJ
    Biochem J; 1983 Jul; 213(1):267-9. PubMed ID: 6412679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of glucose transport using human erythrocyte band 3.
    Shelton RL; Langdon RG
    Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism.
    Abbott RE; Schachter D; Batt ER; Flamm M
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C853-60. PubMed ID: 3717328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential labeling of components in human erythrocyte membranes associated with the transport of glucose.
    Shanahan MF; Jacquez JA
    Membr Biochem; 1978; 1(3-4):239-67. PubMed ID: 756490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a permeant maleimide derivative of cysteine with the erythrocyte glucose carrier. Differential labelling of an exofacial carrier thiol group and its role in the transport mechanism.
    May JM
    Biochem J; 1989 Nov; 263(3):875-81. PubMed ID: 2489029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography and functions of sulfhydryl groups of the human erythrocyte glucose transport mechanism.
    Abbott RE; Schachter D
    Mol Cell Biochem; 1988; 82(1-2):85-90. PubMed ID: 3185521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of glyceraldehyde 3 phosphate dehydrogenase activity and tyr-phosphorylation of Band 3 in human erythrocytes treated with ferriprotoporphyrin IX.
    Omodeo-Salè F; Cortelezzi L; Riva E; Vanzulli E; Taramelli D
    Biochem Pharmacol; 2007 Nov; 74(9):1383-9. PubMed ID: 17714694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoaffinity labeling of glyceraldehyde-3-phosphate dehydrogenase by an aryl azide derivative of glucosamine in human erythrocytes.
    May JM
    J Biol Chem; 1986 Feb; 261(6):2542-7. PubMed ID: 3949733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of phosphoenolpyruvate transport across the erythrocyte membrane. Evidence for involvement of band 3 in the transport system.
    Hamasaki N; Matsuyama H; Hirota-Chigita C
    Eur J Biochem; 1983 May; 132(3):531-6. PubMed ID: 6852012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase.
    Tsai IH; Murthy SN; Steck TL
    J Biol Chem; 1982 Feb; 257(3):1438-42. PubMed ID: 7056725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ATP-modulated specific association of glyceraldehyde-3-phosphate dehydrogenase with human erythrocyte glucose transporter.
    Lachaal M; Berenski CJ; Kim J; Jung CY
    J Biol Chem; 1990 Sep; 265(26):15449-54. PubMed ID: 2394733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reconstitution of the human erythrocyte sugar transporter in planar bilayer membranes.
    Nickson JK; Jones MN
    Biochim Biophys Acta; 1982 Aug; 690(1):31-40. PubMed ID: 6751392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The monosaccharide transport system of the human erythrocyte. Orientation upon reconstitution.
    Baldwin JM; Lienhard GE; Baldwin SA
    Biochim Biophys Acta; 1980 Jul; 599(2):699-714. PubMed ID: 7407110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity.
    Jung CY; Pinkofsky HB; Cowden MW
    Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-binding groups involved in CA2+ regulation of the structure and function of the erythrocyte membrane.
    Moore RB; Manery JF; Dryden EE
    Prog Clin Biol Res; 1978; 20():51-73. PubMed ID: 652818
    [No Abstract]   [Full Text] [Related]  

  • 20. Developmental changes in glucose transport of guinea pig erythrocytes.
    Kondo T; Beutler E
    J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.