These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7126280)

  • 1. Low frequency amplitude modulated microwave fields change calcium efflux rates from synaptosomes.
    Lin-Liu S; Adey WR
    Bioelectromagnetics; 1982; 3(3):309-22. PubMed ID: 7126280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study of microwave effects on calcium efflux in rat brain tissue.
    Shelton WW; Merritt JH
    Bioelectromagnetics; 1981; 2(2):161-7. PubMed ID: 7295363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex.
    Adey WR; Bawin SM; Lawrence AF
    Bioelectromagnetics; 1982; 3(3):295-307. PubMed ID: 6812594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave induced stimulation of 32Pi incorporation into phosphoinositides of rat brain synaptosomes.
    Gandhi CR; Ross DH
    Radiat Environ Biophys; 1989; 28(3):223-34. PubMed ID: 2552495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism.
    Sanders AP; Joines WT; Allis JW
    Bioelectromagnetics; 1985; 6(1):89-97. PubMed ID: 3977971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro.
    Blaustein MP; Ector AC
    Biochim Biophys Acta; 1976 Jan; 419(2):295-308. PubMed ID: 813768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of age and pentobarbitone tolerance on pentobarbitone depression of calcium-45 uptake by mouse brain synaptosomes.
    Jones TW; Beaney J
    Mech Ageing Dev; 1980; 14(3-4):417-26. PubMed ID: 7206827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of amplitude-modulated 147 MHz radiofrequency radiation on calcium ion efflux from avian brain tissue.
    Albert EN; Slaby F; Roche J; Loftus J
    Radiat Res; 1987 Jan; 109(1):19-27. PubMed ID: 3809389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz.
    Schwartz JL; House DE; Mealing GA
    Bioelectromagnetics; 1990; 11(4):349-58. PubMed ID: 2285418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of rates of calcium entry and release of endogenous norepinephrine in rat brain region synaptosomes.
    Daniell LC; Leslie SW
    J Neurochem; 1986 Jan; 46(1):249-56. PubMed ID: 3940286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture.
    Dutta SK; Subramoniam A; Ghosh B; Parshad R
    Bioelectromagnetics; 1984; 5(1):71-8. PubMed ID: 6712751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Quin-2 on 45Ca2+ uptake mediated by Na+i/Ca2+o exchange and 45Ca2+ efflux in rat brain synaptosomes: a requirement for [Ca2+]i.
    Blanco P; Martínez-Serrano A; Bogónez E; Satrústegui J
    Cell Calcium; 1990 Jan; 11(1):25-33. PubMed ID: 2311119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attempts to alter 45Ca2+ binding to brain tissue with pulse-modulated microwave energy.
    Merritt JH; Shelton WW; Chamness AF
    Bioelectromagnetics; 1982; 3(4):475-8. PubMed ID: 7181970
    [No Abstract]   [Full Text] [Related]  

  • 15. Reduction of K+-stimulated 45Ca2+ influx in synaptosomes with age involves inactivating and noninactivating calcium channels and is correlated with temporal modifications in protein dephosphorylation.
    Martínez-Serrano A; Bogónez E; Vitórica J; Satrústegui J
    J Neurochem; 1989 Feb; 52(2):576-84. PubMed ID: 2463338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation.
    Blackman CF; Benane SG; Joines WT; Hollis MA; House DE
    Bioelectromagnetics; 1980; 1(3):277-83. PubMed ID: 7284026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of voltage-dependent 45Ca2+ uptake rates by synaptosomes isolated from rat brain regions.
    Leslie SW; Barr E; Chandler LJ
    J Neurochem; 1983 Dec; 41(6):1602-5. PubMed ID: 6644302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent 86 Rb efflux and ethanol intoxication: studies of human red blood cells and rodent brain synaptosomes.
    Yamamoto HA; Harris RA
    Eur J Pharmacol; 1983 Apr; 88(4):357-63. PubMed ID: 6861876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid kinetics of potassium-evoked release of acetylcholine from rat brain synaptosomes: analysis by rapid superfusion.
    Pearce LB; Buck T; Adamec E
    J Neurochem; 1991 Aug; 57(2):636-47. PubMed ID: 2072108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition by quinacrine of depolarization-induced acetylcholine release and calcium influx in rat brain cortical synaptosomes.
    Baba A; Ohta A; Iwata H
    J Neurochem; 1983 Jun; 40(6):1758-61. PubMed ID: 6854332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.