These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 7126374)

  • 1. Analogic delay lines for electrophysiological signals: practical approaches in CNS spike-activity analysis.
    Seitun A; Gandolfo C
    Boll Soc Ital Biol Sper; 1982 Aug; 58(15):997-1003. PubMed ID: 7126374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat.
    Yakovenko S; Drew T
    J Neurophysiol; 2009 Aug; 102(2):853-74. PubMed ID: 19458152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ortho-antidromic latency fitting and identification of antidromically activated CNS long-axoned neurones.
    Seitun A; Favale E; Gandolfo C
    Neurosci Lett; 1979 Oct; 14(2-3):213-8. PubMed ID: 530498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The late excitatory responses of the motor cortex neurons in the cat to stimulation of the pyramidal tract].
    Maĭorov VI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(2):316-9. PubMed ID: 10822850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of basolateral amygdala projection cells and interneurons using extracellular recordings.
    Likhtik E; Pelletier JG; Popescu AT; Paré D
    J Neurophysiol; 2006 Dec; 96(6):3257-65. PubMed ID: 17110739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-line analysis of two simultaneous neural spike trains with a LINC 8 computer.
    Kelly JS; Renaud LP
    J Physiol; 1972 Oct; 226(2):14P-15P. PubMed ID: 5085316
    [No Abstract]   [Full Text] [Related]  

  • 7. INTRACELLULAR MICROELECTRODE STUDIES OF ANTIDROMIC RESPONSES IN CORTICAL PYRAMIDAL TRACT NEURONS.
    STEFANIS C; JASPER H
    J Neurophysiol; 1964 Sep; 27():828-54. PubMed ID: 14205007
    [No Abstract]   [Full Text] [Related]  

  • 8. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic spike detection based on adaptive template matching for extracellular neural recordings.
    Kim S; McNames J
    J Neurosci Methods; 2007 Sep; 165(2):165-74. PubMed ID: 17669507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks.
    Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S
    Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular potential fields of single PT-neurons.
    Rosenthal F
    Brain Res; 1972 Jan; 36(2):251-63. PubMed ID: 5009638
    [No Abstract]   [Full Text] [Related]  

  • 14. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
    Tomita M; Eggermont JJ
    J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic multiunit recordings in behaving animals: advantages and limitations.
    Supèr H; Roelfsema PR
    Prog Brain Res; 2005; 147():263-82. PubMed ID: 15581712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Floating microelectrode for recording the spike activity of the cerebral neurons of homeothermic animals].
    Butukhanov VV; Stepanov II; Gevorgian EG
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):764-7. PubMed ID: 7286311
    [No Abstract]   [Full Text] [Related]  

  • 18. [Periodicity of frequency oscillations in the spontaneous spike activity of pyramidal tract cortical neurons in the cat].
    Kulikov MA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(4):686-94. PubMed ID: 7136274
    [No Abstract]   [Full Text] [Related]  

  • 19. Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo.
    Takahashi S; Sakurai Y
    Neuroscience; 2005; 134(1):301-15. PubMed ID: 15982823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependence of SI RA neuron response to cutaneous flutter stimulation.
    Whitsel BL; Kelly EF; Quibrera M; Tommerdahl M; Li Y; Favorov OV; Xu M; Metz CB
    Somatosens Mot Res; 2003; 20(1):45-69. PubMed ID: 12745444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.