These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 7126374)

  • 21. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Temporal phase complementarity between the lateral geniculate neurons sharing a common receptive field].
    Li CY; Xu XZ
    Sheng Li Xue Bao; 1993 Feb; 45(1):91-5. PubMed ID: 8503036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneity of rat corticospinal neurons.
    Tseng GF; Prince DA
    J Comp Neurol; 1993 Sep; 335(1):92-108. PubMed ID: 8408775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro 2-D networks of neurons characterized by processing the signals recorded with a planar microtransducer array.
    Bove M; Grattarola M; Verreschi G
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):964-77. PubMed ID: 9311166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation.
    Piwkowska Z; Pospischil M; Brette R; Sliwa J; Rudolph-Lilith M; Bal T; Destexhe A
    J Neurosci Methods; 2008 Apr; 169(2):302-22. PubMed ID: 18187201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons.
    Lemon RN; Baker SN; Kraskov A
    Cereb Cortex; 2021 Oct; 31(11):5131-5138. PubMed ID: 34117760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic positioning and sensing microelectrode array (APSMEA) for multi-site electrophysiological recordings.
    Pan L; Xiang G; Huang L; Yu Z; Cheng J; Xing W; Zhou Y
    J Neurosci Methods; 2008 May; 170(1):123-9. PubMed ID: 18295341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-based source localization of extracellular action potentials.
    Somogyvári Z; Zalányi L; Ulbert I; Erdi P
    J Neurosci Methods; 2005 Sep; 147(2):126-37. PubMed ID: 15913782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The refractory periods and threshold potentials of sequential spikes measured by whole-cell recording.
    Chen N; Chen S; Wu Y; Wang J
    Biochem Biophys Res Commun; 2006 Feb; 340(1):151-7. PubMed ID: 16343428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].
    Merzhanova GKh; Dolbakian EE; Khokhlova VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(3):290-8. PubMed ID: 12889201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Detection of neural spikes based on the combination of wavelet transforms and nonlinear energy operator].
    Liu X; Qian Z; Wang H; Yang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):981-5. PubMed ID: 18027680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microelectrode studies on the evoked activity of a single pyramidal tract cell in the somato-sensory area in cats.
    ASANUMA H
    Jpn J Physiol; 1959 Mar; 9(1):94-105. PubMed ID: 13653863
    [No Abstract]   [Full Text] [Related]  

  • 34. [Temporal analysis of the effects of a brief reticular stimulation on reaction time of cats to a sound signal].
    Nysenbaum-Requin S; Vitton N
    J Physiol (Paris); 1968; 60 Suppl 2():505. PubMed ID: 5735015
    [No Abstract]   [Full Text] [Related]  

  • 35. Electrophysiological interactions in neuronal populations at frequencies of 100 Hz to 1 KHz.
    Turbes CC; Schneider GT; Morgan RJ; Solie TN
    Biomed Sci Instrum; 1985; 21():77-84. PubMed ID: 3995149
    [No Abstract]   [Full Text] [Related]  

  • 36. Antidromic potential recordings from the bulbar pyramid of the cat.
    BROOKHART JM; MORRIS RE
    J Neurophysiol; 1948 Jul; 11(4):387-98. PubMed ID: 18872406
    [No Abstract]   [Full Text] [Related]  

  • 37. Motion speed and reaction time after section of the pyramidal tracts in cats. Discussion of M. Wiesendanger's paper.
    Laursen AM
    Bull Schweiz Akad Med Wiss; 1966 Dec; 22(4):336-40. PubMed ID: 5995037
    [No Abstract]   [Full Text] [Related]  

  • 38. Microelectrode analysis of pyramidal system during transition from sleep to wakefulness.
    WHITLOCK DG; ARDUINI A; MORUZZI G
    J Neurophysiol; 1953 Jul; 16(4):414-29. PubMed ID: 13070052
    [No Abstract]   [Full Text] [Related]  

  • 39. An improved time-amplitude window discriminator.
    Bak MJ; Schmidt EM
    IEEE Trans Biomed Eng; 1977 Sep; 24(5):486-9. PubMed ID: 408262
    [No Abstract]   [Full Text] [Related]  

  • 40. [Automatic search for neurons using a pacing micromanipulator].
    Orduian GS
    Fiziol Zh SSSR Im I M Sechenova; 1971 May; 57(5):761-6. PubMed ID: 5098805
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.