These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 7126806)
1. Decreased viscosity of human erythrocyte suspension due to drug-induced spherostomatocytosis. Suda T; Maeda N; Shimizu D; Kamitsubo E; Shiga T Biorheology; 1982; 19(4):555-65. PubMed ID: 7126806 [TBL] [Abstract][Full Text] [Related]
2. Decreased viscosity of human erythrocyte suspension induced by chlorpromazine and isoxsuprine. Suda T; Shimizu D; Maeda N; Shiga T Biochem Pharmacol; 1981 Aug; 30(15):2057-64. PubMed ID: 7295326 [No Abstract] [Full Text] [Related]
3. The influence of erythrocyte shape on suspension viscosities. Reinhart WH; Singh-Marchetti M; Straub PW Eur J Clin Invest; 1992 Jan; 22(1):38-44. PubMed ID: 1559541 [TBL] [Abstract][Full Text] [Related]
4. The influence of deformation of transformed erythrocytes during flow on the rate of oxygen release. Kon K; Maeda N; Shiga T J Physiol; 1983 Jun; 339():573-84. PubMed ID: 6887035 [TBL] [Abstract][Full Text] [Related]
5. The flow behavior of lysolecithin-induced echinocytes. Rogausch H Biorheology; 1984; 21(6):757-65. PubMed ID: 6518288 [TBL] [Abstract][Full Text] [Related]
7. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology. Antonova N; Riha P; Ivanov I; Gluhcheva Y Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715 [TBL] [Abstract][Full Text] [Related]
8. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge. Nwafor A; Coakley WT Biochem Pharmacol; 1985 Sep; 34(18):3329-36. PubMed ID: 4038341 [TBL] [Abstract][Full Text] [Related]
9. Measurements of viscosity of synthetic erythrocyte suspensions. Djordjevich L; Kashani A; Miller IF; Ivankovich AD Biorheology; 1987; 24(2):207-17. PubMed ID: 3651592 [TBL] [Abstract][Full Text] [Related]
10. Effect of high osmotic media on blood viscosity and red blood cell deformability. Yamamoto A; Niimi H Biorheology; 1983; 20(5):615-22. PubMed ID: 6677281 [TBL] [Abstract][Full Text] [Related]
11. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions. Corry WD; Jackson LJ; Seaman GV Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575 [TBL] [Abstract][Full Text] [Related]
13. Influence of parathyroid hormone, calcitonin, 1,25(OH)2 cholecalciferol, calcium, and the calcium ionophore A23187 on erythrocyte morphology and blood viscosity. Mark M; Walter R; Harris LG; Reinhart WH J Lab Clin Med; 2000 Apr; 135(4):347-52. PubMed ID: 10779051 [TBL] [Abstract][Full Text] [Related]
14. Red cell rheology in stomatocyte-echinocyte transformation: roles of cell geometry and cell shape. Reinhart WH; Chien S Blood; 1986 Apr; 67(4):1110-8. PubMed ID: 3955230 [TBL] [Abstract][Full Text] [Related]
15. Functional impairments of human red cells, induced by dehydroepiandrosterone sulfate. Kon K; Maeda N; Shiga T Pflugers Arch; 1982 Oct; 394(4):279-86. PubMed ID: 6216454 [TBL] [Abstract][Full Text] [Related]
16. Effects of echinocytosis on hemorrheologic values and exercise performance in horses. Weiss DJ; Geor RJ; Smith CM Am J Vet Res; 1994 Feb; 55(2):204-10. PubMed ID: 8172408 [TBL] [Abstract][Full Text] [Related]
17. Changes in erythrocyte morphology induced by imipramine and chlorpromazine. Ahyayaucha H; Gallego M; Casis O; Bennouna M J Physiol Biochem; 2006 Sep; 62(3):199-205. PubMed ID: 17451161 [TBL] [Abstract][Full Text] [Related]
18. Modifications of the erythrocyte deformability alter the effect of temperature on the relative viscosity of human blood. Rogausch H Biorheology; 1982; 19(1/2):237-44. PubMed ID: 7093454 [TBL] [Abstract][Full Text] [Related]