These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7127144)

  • 1. Morphology and distribution of postnatally generated glial cells in the somatosensory cortex of the rat: an autoradiographic and electron microscopic study.
    Ichikawa M; Hirata Y
    Brain Res; 1982 Aug; 256(4):369-77. PubMed ID: 7127144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal pattern of postnatal proliferation of glial cells in the parietal cortex of the rat.
    Ichikawa M; Shiga T; Hirata Y
    Brain Res; 1983 Aug; 285(2):181-7. PubMed ID: 6616263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gliogenesis of astrocytes and oligodendrocytes in the neocortical grey and white matter of the adult rat: electron microscopic analysis of light radioautographs.
    Kaplan MS; Hinds JW
    J Comp Neurol; 1980 Oct; 193(3):711-27. PubMed ID: 7440787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal pattern of postnatal proliferation of Bergmann glial cells in rat cerebellum: an autoradiographic study.
    Shiga T; Ichikawa M; Hirata Y
    Anat Embryol (Berl); 1983; 167(2):203-11. PubMed ID: 6614505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenesis in the 3-month-old rat visual cortex.
    Kaplan MS
    J Comp Neurol; 1981 Jan; 195(2):323-38. PubMed ID: 7251929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes.
    Imamoto K; Paterson JA; Leblond CP
    J Comp Neurol; 1978 Jul; 180(1):115-28, 132-7. PubMed ID: 649784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells.
    Imamoto K; Leblond CP
    J Comp Neurol; 1978 Jul; 180(1):139-63. PubMed ID: 649786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors.
    Kaplan MS
    J Hirnforsch; 1983; 24(1):23-33. PubMed ID: 6863903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of non-pyramidal neurons in the rat sensorymotor cortex during the fetal and early postnatal periods.
    Ferrer I; Martinez-Matos JA
    J Hirnforsch; 1981; 22(5):555-62. PubMed ID: 7328311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair and reconstruction of the cortical plate following closed cryogenic injury to the neonatal rat cerebrum.
    Suzuki M; Choi BH
    Acta Neuropathol; 1991; 82(2):93-101. PubMed ID: 1927272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The terminations of corticospinal tract axons in the macaque monkey.
    Ralston DD; Ralston HJ
    J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition.
    Rakic P
    Science; 1974 Feb; 183(4123):425-7. PubMed ID: 4203022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons.
    Jackson CA; Peduzzi JD; Hickey TL
    J Neurosci; 1989 Apr; 9(4):1242-53. PubMed ID: 2703875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and autoradiographic study.
    Valverde F; Facal-Valverde MV; Santacana M; Heredia M
    J Comp Neurol; 1989 Dec; 290(1):118-40. PubMed ID: 2480368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histogenesis of ferret somatosensory cortex.
    Noctor SC; Scholnicoff NJ; Juliano SL
    J Comp Neurol; 1997 Oct; 387(2):179-93. PubMed ID: 9336222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Undifferentiated cells present in the pars intercerebralis of larval and adult locusts are glial precursors. Autoradiographic and ultrastructural study in vivo and in vitro.
    Vanhems E; Girardie J
    Brain Res; 1983 Nov; 312(2):177-85. PubMed ID: 6652514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H3-thymidine labeled cerebrospinal fluid contacting cells in the regenerating caudal spinal cord of the lizard Lampropholis.
    Alibardi L
    Ann Anat; 1994 Aug; 176(4):347-56. PubMed ID: 8085658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and differentiation of glial precursor cells in the rat cerebellum.
    Levine JM; Stincone F; Lee YS
    Glia; 1993 Apr; 7(4):307-21. PubMed ID: 8320001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal gliogenesis in the nerve fiber layer of the rabbit retina: an autoradiographic study.
    Schnitzer J
    J Comp Neurol; 1990 Feb; 292(4):551-62. PubMed ID: 2324312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subgranular zone of the dentate gyrus of young rabbits as a secondary matrix. A high-resolution autoradiographic study.
    Guéneau G; Privat A; Drouet J; Court L
    Dev Neurosci; 1982; 5(4):345-58. PubMed ID: 7140583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.