These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7127415)

  • 1. Endogenous patterns of photomechanical movements in teleosts and their relation to activity rhythms.
    Douglas RH; Wagner HJ
    Cell Tissue Res; 1982; 226(1):133-44. PubMed ID: 7127415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length.
    Levinson G; Burnside B
    Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):294-303. PubMed ID: 7203876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of circadian rhythm and cAMP on retinomotor movements in the green sunfish, Lepomis cyanellus.
    Burnside B; Ackland N
    Invest Ophthalmol Vis Sci; 1984 May; 25(5):539-45. PubMed ID: 6325366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of rod retinomotor movements in teleost retinae: the role of dopamine in mediating light-dependent and circadian signals.
    Kolbinger W; Wagner D; Wagner HJ
    Cell Tissue Res; 1996 Sep; 285(3):445-51. PubMed ID: 8772159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina.
    Douglas RH; Wagner HJ; Zaunreiter M; Behrens UD; Djamgoz MB
    Vis Neurosci; 1992; 9(3-4):335-43. PubMed ID: 1390391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphologic changes in teleost primary and secondary retinal cells following brief exposure to light.
    Wagner HJ; Douglas RH
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):24-9. PubMed ID: 6826311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A; Edelman JL; Miller S; Burnside B
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal and circadian retinomotor movements in zebrafish.
    Menger GJ; Koke JR; Cahill GM
    Vis Neurosci; 2005; 22(2):203-9. PubMed ID: 15935112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish.
    Yammouni R; Bozzano A; Douglas RH
    J Exp Biol; 2011 Feb; 214(Pt 3):501-8. PubMed ID: 21228209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous dopamine and cyclic events in the fish retina, II: Correlation of retinomotor movement, spinule formation, and connexon density of gap junctions with dopamine activity during light/dark cycles.
    Kohler K; Kolbinger W; Kurz-Isler G; Weiler R
    Vis Neurosci; 1990 Nov; 5(5):417-28. PubMed ID: 2288893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenesis of diurnal rhythms of cAMP concentration, outer segment disc shedding and retinomotor movements in the eye of the brown trout, Salmo trutta.
    McCormack CA; Hayden TJ; Kunz YW
    Brain Behav Evol; 1989; 34(1):65-72. PubMed ID: 2555021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian Rhythms of Retinomotor Movement in a Marine Megapredator, the Atlantic Tarpon, Megalops atlanticus.
    Kopperud KL; Grace MS
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28956858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthine-induced dark-adaptive retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Neurochem; 1985 Jun; 44(6):1753-63. PubMed ID: 2580951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an endogenous clock in the retina of rainbow trout: I. Retinomotor movements, dopamine and melatonin.
    Zaunreiter M; Brandstätter R; Goldschmid A
    Neuroreport; 1998 Apr; 9(6):1205-9. PubMed ID: 9601695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro.
    Burnside B; Basinger S
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms in the green sunfish retina.
    Dearry A; Barlow RB
    J Gen Physiol; 1987 May; 89(5):745-70. PubMed ID: 3598559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian regulation of teleost retinal cone movements in vitro.
    McCormack CA; McDonnell MT
    J Gen Physiol; 1994 Mar; 103(3):487-99. PubMed ID: 8195784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced photoreceptor shedding in teleost retina blocked by dibutyryl cyclic AMP.
    Eckmiller MS; Burnside B
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1328-32. PubMed ID: 6309697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.