These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 7127474)
1. Localization of specific DNA sequences in cell nuclei and human metaphase chromosomes by fluorescence microscopy. Van Prooijen-Knegt AC; Van der Ploeg M Cell Biol Int Rep; 1982 Jul; 6(7):653. PubMed ID: 7127474 [No Abstract] [Full Text] [Related]
2. In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Van Prooijen-Knegt AC; Van Hoek JF; Bauman JG; Van Duijn P; Wool IG; Van der Ploeg M Exp Cell Res; 1982 Oct; 141(2):397-407. PubMed ID: 6754395 [No Abstract] [Full Text] [Related]
3. Fluorescence in situ hybridization on metaphase chromosomes with biotinylated probes. In situ hybridization, biotin labeling, cosmids, gene mapping, oncogene amplification. Cherif D; Derré J; Berger R Nouv Rev Fr Hematol (1978); 1990; 32(6):459-60. PubMed ID: 2101880 [TBL] [Abstract][Full Text] [Related]
4. Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Nederlof PM; Robinson D; Abuknesha R; Wiegant J; Hopman AH; Tanke HJ; Raap AK Cytometry; 1989 Jan; 10(1):20-7. PubMed ID: 2492920 [TBL] [Abstract][Full Text] [Related]
5. [Visualization of DNA segments, interacting with reactive oligonucleotide derivatives in interphase nuclei and metaphase chromosomes]. Bozhenok LN; Chernolovskaia EL; Gorozhankin AV; Baĭborodin SI; Bolobolova EU; Kiseleva EV; Kerkis AIu; Kobets ND Mol Biol (Mosk); 1995; 29(4):862-70. PubMed ID: 7476953 [TBL] [Abstract][Full Text] [Related]
6. Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Fan YS; Davis LM; Shows TB Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6223-7. PubMed ID: 2201023 [TBL] [Abstract][Full Text] [Related]
7. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Lichter P; Cremer T; Borden J; Manuelidis L; Ward DC Hum Genet; 1988 Nov; 80(3):224-34. PubMed ID: 3192212 [TBL] [Abstract][Full Text] [Related]
8. Mapping of single-copy DNA sequences on human chromosomes by in situ hybridization with biotinylated probes: enhancement of detection sensitivity by intensified-fluorescence digital-imaging microscopy. Viegas-Pequignot E; Dutrillaux B; Magdelenat H; Coppey-Moisan M Proc Natl Acad Sci U S A; 1989 Jan; 86(2):582-6. PubMed ID: 2643118 [TBL] [Abstract][Full Text] [Related]
9. Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction. Dunham I; Lengauer C; Cremer T; Featherstone T Hum Genet; 1992 Feb; 88(4):457-62. PubMed ID: 1740323 [TBL] [Abstract][Full Text] [Related]
10. Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Lawrence JB; Villnave CA; Singer RH Cell; 1988 Jan; 52(1):51-61. PubMed ID: 2830981 [TBL] [Abstract][Full Text] [Related]
11. In situ hybridization to metaphase chromosomes and interphase nuclei. Knoll JH; Lichter P Curr Protoc Hum Genet; 2005 May; Chapter 4():Unit 4.3. PubMed ID: 18428378 [TBL] [Abstract][Full Text] [Related]
12. Non-radioactive in situ hybridization pattern of the M13 minisatellite sequences on human metaphase chromosomes. Christmann A; Lagoda PJ; Zang KD Hum Genet; 1991 Mar; 86(5):487-90. PubMed ID: 2016089 [TBL] [Abstract][Full Text] [Related]
14. The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes. Razin SV; Mantieva VL; Georgiev GP Nucleic Acids Res; 1979 Nov; 7(6):1713-35. PubMed ID: 503867 [TBL] [Abstract][Full Text] [Related]
15. Immunofluorescence localization of Z-DNA in chromosomes: quantitation by scanning microphotometry and computer-assisted image analysis. Arndt-Jovin DJ; Robert-Nicoud M; Baurschmidt P; Jovin TM J Cell Biol; 1985 Oct; 101(4):1422-33. PubMed ID: 3930509 [TBL] [Abstract][Full Text] [Related]
16. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis. Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy. Moers MH; Kalle WH; Ruiter AG; Wiegant JC; Raap AK; Greve J; de Grooth BG; van Hulst NF J Microsc; 1996 Apr; 182(Pt 1):40-5. PubMed ID: 8632445 [TBL] [Abstract][Full Text] [Related]
18. Two-color hybridization with high complexity chromosome-specific probes and a degenerate alpha satellite probe DNA allows unambiguous discrimination between symmetrical and asymmetrical translocations. Weier HU; Lucas JN; Poggensee M; Segraves R; Pinkel D; Gray JW Chromosoma; 1991 Jul; 100(6):371-6. PubMed ID: 1893794 [TBL] [Abstract][Full Text] [Related]
19. Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector. Riethman HC; Moyzis RK; Meyne J; Burke DT; Olson MV Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6240-4. PubMed ID: 2668959 [TBL] [Abstract][Full Text] [Related]
20. Quantitation and mapping of integrated human papillomavirus on human metaphase chromosomes using a fluorescence microscope imaging system. Callahan DE; Karim A; Zheng G; Tso PO; Lesko SA Cytometry; 1992; 13(5):453-61. PubMed ID: 1321707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]