BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7128828)

  • 1. Increase in the number of glucose carriers in chick fibroblasts during embryo development.
    Bernard B; Codogno P; Berjonneau C; Aubery M; Bourrillon R
    FEBS Lett; 1982 Aug; 145(2):308-12. PubMed ID: 7128828
    [No Abstract]   [Full Text] [Related]  

  • 2. Deprival of nicotinamide leads to enhanced glucose transport in chick embryo fibroblasts.
    Amos H; Mandel KG; Gay RJ
    Fed Proc; 1984 May; 43(8):2265-8. PubMed ID: 6232152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Concanavalin A on 3-O-methylglucose uptake in cultured chick embryo fibroblasts. Evidence for differences related to the age of embryos.
    Berjonneau C; Codogno P; Botti J; Giner M; Bernard B; Aubery M
    Differentiation; 1984; 27(3):192-5. PubMed ID: 6500202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of hexose transporters of chicken embryo fibroblasts during glucose starvation.
    Tillotson LG; Yamada K; Isselbacher KJ
    Fed Proc; 1984 May; 43(8):2262-4. PubMed ID: 6325251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts.
    Bigley R; Wirth M; Layman D; Riddle M; Stankova L
    Diabetes; 1983 Jun; 32(6):545-8. PubMed ID: 6354783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of the effects of concanavalin A on cell growth and the transport of 3-O-methylglucose in chick embryo fibroblasts].
    Bernard B; Aubery M; Bourrillon R
    C R Seances Acad Sci D; 1980 Sep; 291(2):295-8. PubMed ID: 6775841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent changes in 3-O-methylglucose transport in chick embryo fibroblasts.
    Aubery M; Bernard B; Bourrillon R
    Biochem Biophys Res Commun; 1979 Nov; 91(2):508-14. PubMed ID: 518650
    [No Abstract]   [Full Text] [Related]  

  • 8. Counter-transport in chick embryo fibroblasts. A significant factor in measurement of glucose entry.
    Gay RJ; Amos H
    Biochem J; 1982 Aug; 206(2):301-9. PubMed ID: 7150246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influx and efflux of 3-O-methyl-D-glucose by cultured human fibroblasts.
    Longo N; Griffin LD; Elsas LJ
    Am J Physiol; 1988 May; 254(5 Pt 1):C628-33. PubMed ID: 3364550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tunicamycin on hexose transport in mouse embryo fibroblast Swiss 3T3 cells.
    Kitagawa K; Nishino H; Iwashima A
    Biochim Biophys Acta; 1985 Nov; 821(1):67-71. PubMed ID: 4063363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purines as 'hyper-repressors' of glucose transport. A role for phosphoribosyl diphosphate.
    Gay RJ; Amos H
    Biochem J; 1983 Jul; 214(1):133-44. PubMed ID: 6193780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-specific cytochalasin B binding is increased in chicken embryo fibroblasts transformed by Rous sarcoma virus.
    Salter DW; Weber MJ
    J Biol Chem; 1979 May; 254(9):3554-61. PubMed ID: 218973
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of hexose carriers in chicken embryo fibroblasts. Effect of glucose starvation and role of protein synthesis.
    Yamada K; Tillotson LG; Isselbacher KJ
    J Biol Chem; 1983 Aug; 258(16):9786-92. PubMed ID: 6885770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased membrane transport of 2-deoxyglucose and 3-O-methylglucose is an early event in the transformation of chick embryo fibroblasts by Rous sarcoma virus.
    Lang DR; Weber MJ
    J Cell Physiol; 1978 Mar; 94(3):315-9. PubMed ID: 202604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity.
    Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU
    Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of glucose transport inhibitors in the frog lens.
    Lucas VA; Duncan G
    Exp Eye Res; 1983 Aug; 37(2):175-82. PubMed ID: 6604641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport in giant barnacle muscle fibres.
    Carruthers A
    J Physiol; 1983 Mar; 336():377-96. PubMed ID: 6875913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of sugar transport in cultured diploid human skin fibroblasts.
    Germinario RJ; Rockman H; Oliveira M; Manuel S; Taylor M
    J Cell Physiol; 1982 Sep; 112(3):367-72. PubMed ID: 6182150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cytochalasin B binding to adult rat liver parenchymal cells in primary culture.
    Gross RL; Kletzien RF; Butcher FR
    Biochim Biophys Acta; 1980 Nov; 602(3):635-43. PubMed ID: 7437425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.