These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7128828)

  • 21. Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus. Comparison of transport properties of whole cells and membrane vesicles.
    Inui KI; Tillotson LG; Isselbacher KJ
    Biochim Biophys Acta; 1980 Jun; 598(3):616-27. PubMed ID: 6248112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+-dependent stimulation of 3-O-methylglucose transport in mouse fibroblast Swiss 3T3 cells induced by phorbol-12,13-dibutyrate.
    Kitagawa K; Nishino H; Iwashima A
    Biochem Biophys Res Commun; 1985 Apr; 128(1):127-33. PubMed ID: 2985070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of glucose transport in chick fibroblasts: bicarbonate, lactate and ascorbic acid.
    Amos H; Christopher CW; Musliner TA
    J Cell Physiol; 1976 Dec; 89(4):669-75. PubMed ID: 1034636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitors of protein synthesis cause increased hexose transport in cultured human fibroblasts by a mechanism other than transporter translocation.
    Germinario RJ; Manuel S; Chang Z; Leckett B
    J Cell Physiol; 1992 Apr; 151(1):156-63. PubMed ID: 1560041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inositol phospho-oligosaccharides from rat fibroblasts and adipocytes stimulate 3-O-methylglucose transport.
    Kellerer M; Machicao F; Berti L; Sixt B; Mushack J; Seffer E; Mosthaf L; Ullrich A; Häring HU
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):699-704. PubMed ID: 8240280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of sugars in chick-embryo fibroblasts. Evidence for a low-affinity system and a high-affinity system for glucose transport.
    Christopher CW; Kohlbacher MS; Amos H
    Biochem J; 1976 Aug; 158(2):439-50. PubMed ID: 186039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of a genetic variant to study the hexose transport properties of human skin fibroblasts.
    Mesmer OT; Gordon BA; Rupar CA; Lo TC
    Biochem J; 1990 Feb; 265(3):823-9. PubMed ID: 2306216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nature of regulation of hexose transport in cultured mammalian fibroblasts: aerobic "repressive" control by D-glucosamine.
    Ullrey DB; Kalckar HM
    Arch Biochem Biophys; 1981 Jun; 209(1):168-74. PubMed ID: 7283435
    [No Abstract]   [Full Text] [Related]  

  • 31. Insulin regulation of glucose metabolism in HT29 colonic adenocarcinoma cells: activation of glycolysis without augmentation of glucose transport.
    Franklin CC; Chin PC; Turner JT; Kim HD
    Biochim Biophys Acta; 1988 Oct; 972(1):60-8. PubMed ID: 3052595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts.
    Ortiz PA; Haspel HC
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):67-72. PubMed ID: 8216241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The one-site model of human erythrocyte glucose transport: testing its predictions using network thermodynamic computer simulations.
    May JM
    Biochim Biophys Acta; 1991 Apr; 1064(1):1-6. PubMed ID: 2025630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of sugar transport in human fibroblasts independent of glucose metabolism or carrier-substrate interaction.
    Germinario RJ; Chang Z; Manuel S; Oliveira M
    Biochem Biophys Res Commun; 1985 May; 128(3):1418-24. PubMed ID: 4039932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sugar transport in chick embryo fibroblasts. I. A functional change in the plasma membrane associated with the rate of cell growth.
    Kletzien RF; Perdue JF
    J Biol Chem; 1974 Jun; 249(11):3366-74. PubMed ID: 4831218
    [No Abstract]   [Full Text] [Related]  

  • 37. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thyrotropin stimulates glucose transport in cultured rat thyroid cells.
    Filetti S; Damante G; Foti D
    Endocrinology; 1987 Jun; 120(6):2576-81. PubMed ID: 3032597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose transport in thymocyte plasma-membrane vesicles.
    Schraw WP; Regen DM
    Biochim Biophys Acta; 1981 Dec; 649(3):726-34. PubMed ID: 7317424
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.