These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7129869)

  • 1. Diffusion of radon through cracks in a concrete slab.
    Landman KA
    Health Phys; 1982 Jul; 43(1):65-71. PubMed ID: 7129869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of radon through cracks in a concrete slab.
    Landman KA; Cohen DS
    Health Phys; 1983 Mar; 44(3):249-57. PubMed ID: 6832976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model development for simulation of the impact of slab thickness, joints, and membranes on indoor radon concentration.
    Muñoz E; Frutos B; Olaya M; Sánchez J
    J Environ Radioact; 2017 Oct; 177():280-289. PubMed ID: 28728129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodiffusion in concrete slab as a driving force of indoor radon entry.
    Minkin L
    Health Phys; 2001 Feb; 80(2):151-6. PubMed ID: 11197463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discussion about surface boundary conditions of radon concentration and surface exhalation rate calculations in indoor concrete slab.
    He B; Shang AG; Guo HP
    Health Phys; 1998 Mar; 74(3):366-9. PubMed ID: 9482602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants.
    Nielson KK; Rogers VC; Holt RB; Pugh TD; Grondzik WA; de Meijer RJ
    Health Phys; 1997 Oct; 73(4):668-78. PubMed ID: 9314229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ determination of the diffusion coefficient of 222Rn in concrete.
    Gadd MS; Borak TB
    Health Phys; 1995 Jun; 68(6):817-22. PubMed ID: 7759260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radon exhalation from sub-slab aggregate used in home construction in Canada.
    Bergman L; Lee J; Sadi B; Chen J
    Radiat Prot Dosimetry; 2015 Jun; 164(4):606-11. PubMed ID: 25977347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical modeling of indoor radon concentration and its validation through measurements in South-East Haryana, India.
    Singh P; Sahoo BK; Bajwa BS
    J Environ Manage; 2016 Apr; 171():35-41. PubMed ID: 26874612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements.
    Kumar A; Chauhan RP; Joshi M; Sahoo BK
    J Environ Radioact; 2014 Jan; 127():50-5. PubMed ID: 24158045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate measurement of the radon exhalation rate of building materials using the closed chamber method.
    Zhang L; Lei X; Guo Q; Wang S; Ma X; Shi Z
    J Radiol Prot; 2012 Sep; 32(3):315-23. PubMed ID: 22809839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples.
    Sahoo BK; Sapra BK; Gaware JJ; Kanse SD; Mayya YS
    Sci Total Environ; 2011 Jun; 409(13):2635-41. PubMed ID: 21482430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New method and installation for rapid determination of radon diffusion coefficient in various materials.
    Tsapalov A; Gulabyants L; Livshits M; Kovler K
    J Environ Radioact; 2014 Apr; 130():7-14. PubMed ID: 24412813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method of measurement of radon exhalation from building materials.
    Awhida A; Ujić P; Vukanac I; Đurašević M; Kandić A; Čeliković I; Lončar B; Kolarž P
    J Environ Radioact; 2016 Nov; 164():337-343. PubMed ID: 27552657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metakaolin as a radon retardant from concrete.
    Lau BM; Balendran RV; Yu KN
    Radiat Prot Dosimetry; 2003; 103(3):273-6. PubMed ID: 12678391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania).
    Cosma C; Cucoş-Dinu A; Papp B; Begy R; Sainz C
    J Environ Radioact; 2013 Feb; 116():174-9. PubMed ID: 23164693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moisture dependence of radon transport in concrete: measurements and modeling.
    Cozmuta I; van der Graaf ER; de Meijer RJ
    Health Phys; 2003 Oct; 85(4):438-56. PubMed ID: 13678285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of aging, humidity, and fly-ash additive on the radon exhalation from concrete.
    Roelofs LM; Scholten LC
    Health Phys; 1994 Sep; 67(3):266-71. PubMed ID: 8056593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon exhalation from building materials for decorative use.
    Chen J; Rahman NM; Abu Atiya I
    J Environ Radioact; 2010 Apr; 101(4):317-22. PubMed ID: 20167403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An international intercomparison of soil gas radon and radon exhalation measurements.
    Hutter AR; Knutson EO
    Health Phys; 1998 Jan; 74(1):108-14. PubMed ID: 9415589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.