These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 71299)

  • 21. A light and electron microscopic study of the limb long bones perichondral ossification in the quail embryo (Coturnix coturnix japonica).
    Pourlis AF; Antonopoulos J; Magras IN
    Ital J Anat Embryol; 2006; 111(3):159-70. PubMed ID: 17312922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Basement membrane composition of cartilage canals during development and ossification of the epiphysis.
    Ganey TM; Ogden JA; Sasse J; Neame PJ; Hilbelink DR
    Anat Rec; 1995 Mar; 241(3):425-37. PubMed ID: 7755183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential actions of VEGF-A isoforms on perichondrial angiogenesis during endochondral bone formation.
    Takimoto A; Nishizaki Y; Hiraki Y; Shukunami C
    Dev Biol; 2009 Aug; 332(2):196-211. PubMed ID: 19464280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The epiphyseal cartilage and growth of long bones in Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Tissue Cell; 1999 Jun; 31(3):301-7. PubMed ID: 10481302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The periosteum. Part 1: Anatomy, histology and molecular biology.
    Augustin G; Antabak A; Davila S
    Injury; 2007 Oct; 38(10):1115-30. PubMed ID: 17889870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The expression of the nuclear oncogenes c-myc and c-jun in the groove of Ranvier of the rabbit growth plate.
    Oni OO
    Afr J Med Med Sci; 2002 Dec; 31(4):325-7. PubMed ID: 15027772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The chondrogenic potential of periosteum decreases with age.
    O'Driscoll SW; Saris DB; Ito Y; Fitzimmons JS
    J Orthop Res; 2001 Jan; 19(1):95-103. PubMed ID: 11332626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Reproduction and differentiation of the cells in enchondral osteogenesis].
    Rodionova NV
    Ontogenez; 1987; 18(6):622-30. PubMed ID: 3431795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural stages in the development of the long bones and epiphyses: a study in the New Zealand white rabbit.
    Rivas R; Shapiro F
    J Bone Joint Surg Am; 2002 Jan; 84(1):85-100. PubMed ID: 11792784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fate of chondrocytes in endochondral ossification in the rabbit.
    Bentley G; Greer RB
    J Bone Joint Surg Br; 1970 Aug; 52(3):571-7. PubMed ID: 5455090
    [No Abstract]   [Full Text] [Related]  

  • 31. Cell proliferation and specialization during endochondral osteogenesis in young rats.
    YOUNG RW
    J Cell Biol; 1962 Sep; 14(3):357-70. PubMed ID: 14002829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of function on chondrogenesis at the epiphyseal cartilage of a growing long bone.
    Meikle MC
    Anat Rec; 1975 Jul; 182(3):387-99. PubMed ID: 1098516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ethane-1-hydroxy-1, 1-diphosphonate on cell differentiation, and proteoglycan and calcium metabolism, in the proximal tibia of young rats.
    Katoh Y; Tsuji H; Matsui H; Maruta K; Morita Y
    Bone; 1991; 12(2):59-65. PubMed ID: 1905942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits.
    Bentley G; Greer RB
    Nature; 1971 Apr; 230(5293):385-8. PubMed ID: 4927730
    [No Abstract]   [Full Text] [Related]  

  • 35. Ultrastructural in vitro characterization of a porous hydroxyapatite/bone cell interface.
    Holden CM; Bernard GW
    J Oral Implantol; 1990; 16(2):86-95. PubMed ID: 1963643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia.
    Syftestad GT; Weitzhandler M; Caplan AI
    Dev Biol; 1985 Aug; 110(2):275-83. PubMed ID: 4018399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth.
    Foolen J; van Donkelaar C; Nowlan N; Murphy P; Huiskes R; Ito K
    J Orthop Res; 2008 Sep; 26(9):1263-8. PubMed ID: 18404654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effects of autologous periosteum wrapping allogenic tendon graft on tendon-bone healing inside a bone tunnel in rabbits].
    Long X; Chen Z; Cao S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Oct; 22(10):1255-8. PubMed ID: 18979890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organization of extracellular matrix in epiphyseal growth plate.
    Eisenstein R; Sorgente N; Kuettner KE
    Am J Pathol; 1971 Dec; 65(3):515-34. PubMed ID: 4107630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.