These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7129969)
1. The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Morgan AJ; Morris B Histochemistry; 1982; 75(2):269-85. PubMed ID: 7129969 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal binding properties of earthworm chloragosomes. Ireland MP Acta Biol Acad Sci Hung; 1978; 29(4):385-94. PubMed ID: 757448 [TBL] [Abstract][Full Text] [Related]
3. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens. Morgan AJ; Turner MP Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036 [TBL] [Abstract][Full Text] [Related]
4. Effect of pH and calcium on lead and cadmium uptake by earthworms in water. Kiewiet AT; Ma WC Ecotoxicol Environ Saf; 1991 Feb; 21(1):32-7. PubMed ID: 2060485 [TBL] [Abstract][Full Text] [Related]
5. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367 [TBL] [Abstract][Full Text] [Related]
6. The occurrence and localisation of heavy metals and glycogen in the earthworms Lumbricus rubellus and Dendrobaena rubida from a heavy metal site. Ireland MP; Richards KS Histochemistry; 1977 Mar; 51(2-3):153-66. PubMed ID: 845058 [TBL] [Abstract][Full Text] [Related]
7. Zinc sequestration by earthworm (Annelida: Oligochaeta) chloragocytes. An in vivo investigation using fully quantitative electron probe X-ray micro-analysis. Morgan JE; Morgan AJ Histochemistry; 1989; 90(5):405-11. PubMed ID: 2541118 [TBL] [Abstract][Full Text] [Related]
8. The effect of lead incorporation on the elemental composition of earthworm (Annelida, Oligochaeta) chloragosome granules. Morgan JE; Morgan AJ Histochemistry; 1989; 92(3):237-41. PubMed ID: 2777641 [TBL] [Abstract][Full Text] [Related]
9. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues. Morgan AJ; Stürzenbaum SR; Winters C; Grime GW; Aziz NA; Kille P Ecotoxicol Environ Saf; 2004 Jan; 57(1):11-9. PubMed ID: 14659362 [TBL] [Abstract][Full Text] [Related]
10. Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta. Marinussen MP; van der Zee SE; de Haan FA Ecotoxicol Environ Saf; 1997 Dec; 38(3):309-15. PubMed ID: 9469885 [TBL] [Abstract][Full Text] [Related]
11. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. He H; Tam NF; Yao A; Qiu R; Li WC; Ye Z Environ Sci Pollut Res Int; 2016 Dec; 23(23):23551-23560. PubMed ID: 27614643 [TBL] [Abstract][Full Text] [Related]
12. Metals and phosphate in the chloragosomes of Lumbricus terrestris and their possible physiological significance. Prentø P Cell Tissue Res; 1979 Jan; 196(1):123-34. PubMed ID: 421244 [TBL] [Abstract][Full Text] [Related]
13. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus. Richardson JB; Görres JH; Friedland AJ Environ Sci Pollut Res Int; 2016 Sep; 23(18):18253-66. PubMed ID: 27272919 [TBL] [Abstract][Full Text] [Related]
14. In situ metal imaging and Zn ligand-speciation in a soil-dwelling sentinel: complementary electron microprobe and synchrotron microbeam X-ray analyses. Morgan AJ; Mosselmans JF; Charnock JM; Bennett A; Winters C; O'Reilly M; Fisher P; Andre J; Turner M; Gunning P; Kille P Environ Sci Technol; 2013 Jan; 47(2):1073-81. PubMed ID: 23198708 [TBL] [Abstract][Full Text] [Related]
15. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Udovic M; Lestan D Environ Pollut; 2007 Jul; 148(2):663-8. PubMed ID: 17234313 [TBL] [Abstract][Full Text] [Related]
16. The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one uncontaminated and four polluted soils. Morgan JE; Morgan AJ Oecologia; 1990 Oct; 84(4):559-566. PubMed ID: 28312974 [TBL] [Abstract][Full Text] [Related]
17. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan. Kamitani T; Kaneko N Ecotoxicol Environ Saf; 2007 Jan; 66(1):82-91. PubMed ID: 16324743 [TBL] [Abstract][Full Text] [Related]
18. Toxicokinetics of metals in the earthworm Lumbricus rubellus exposed to natural polluted soils--relevance of laboratory tests to the field situation. Giska I; van Gestel CA; Skip B; Laskowski R Environ Pollut; 2014 Jul; 190():123-32. PubMed ID: 24747106 [TBL] [Abstract][Full Text] [Related]
19. The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site. Morgan JE; Morgan AJ Environ Pollut; 1998; 99(2):167-75. PubMed ID: 15093311 [TBL] [Abstract][Full Text] [Related]
20. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms. Slizovskiy IB; Kelsey JW; Hatzinger PB Environ Toxicol Chem; 2011 Jan; 30(1):112-23. PubMed ID: 20853447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]