These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7129969)
21. The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Udovic M; Plavc Z; Lestan D Chemosphere; 2007 Nov; 70(1):126-34. PubMed ID: 17675216 [TBL] [Abstract][Full Text] [Related]
22. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils. Beaumelle L; Vile D; Lamy I; Vandenbulcke F; Gimbert F; Hedde M Sci Total Environ; 2016 Nov; 569-570():961-972. PubMed ID: 27378153 [TBL] [Abstract][Full Text] [Related]
23. Glycogen-lead relationship in the earthworm Dendrobaena rubida from a heavy metal site. Richards KS; Ireland MP Histochemistry; 1978 Jun; 56(1):55-64. PubMed ID: 659270 [TBL] [Abstract][Full Text] [Related]
24. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
25. Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Vijver MG; Wolterbeek HT; Vink JP; van Gestel CA Sci Total Environ; 2005 Mar; 340(1-3):271-80. PubMed ID: 15752507 [TBL] [Abstract][Full Text] [Related]
26. Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. Nirola R; Megharaj M; Venkateswarlu K; Aryal R; Correll R; Naidu R Ecotoxicol Environ Saf; 2016 Jul; 129():264-72. PubMed ID: 27057994 [TBL] [Abstract][Full Text] [Related]
27. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
28. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils. Beaumelle L; Gimbert F; Hedde M; Guérin A; Lamy I Sci Total Environ; 2015 Jul; 520():136-45. PubMed ID: 25813966 [TBL] [Abstract][Full Text] [Related]
29. Potatoes - A crop resistant against input of heavy metals from the metallicaly contaminated soil. Musilova J; Bystricka J; Lachman J; Harangozo L; Trebichalsky P; Volnova B Int J Phytoremediation; 2016; 18(6):547-52. PubMed ID: 26421760 [TBL] [Abstract][Full Text] [Related]
30. Cadmium and lead accumulation in three endogeic earthworm species. Latif R; Malek M; Mirmonsef H Bull Environ Contam Toxicol; 2013 Apr; 90(4):456-9. PubMed ID: 23283534 [TBL] [Abstract][Full Text] [Related]
31. The role of earthworm Lampito mauritii (Kinberg) in amending lead and zinc treated soil. Maity S; Padhy PK; Chaudhury S Bioresour Technol; 2008 Oct; 99(15):7291-8. PubMed ID: 18331791 [TBL] [Abstract][Full Text] [Related]
32. Metal accumulation in earthworms inhabiting floodplain soils. Vijver MG; Vink JP; Miermans CJ; van Gestel CA Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683 [TBL] [Abstract][Full Text] [Related]
33. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Ruiz E; Alonso-Azcárate J; Rodríguez L Environ Pollut; 2011 Mar; 159(3):722-8. PubMed ID: 21190761 [TBL] [Abstract][Full Text] [Related]
34. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Seshadri B; Bolan NS; Choppala G; Kunhikrishnan A; Sanderson P; Wang H; Currie LD; Tsang DCW; Ok YS; Kim G Chemosphere; 2017 Oct; 184():197-206. PubMed ID: 28595145 [TBL] [Abstract][Full Text] [Related]
35. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Lukkari T; Haimi J Ecotoxicol Environ Saf; 2005 Sep; 62(1):35-41. PubMed ID: 15978289 [TBL] [Abstract][Full Text] [Related]
36. Aldehyde dehydrogenase expression in Metaphire posthuma as a bioindicator to monitor heavy metal pollution in soil. Panday R; Bhatt PS; Bhattarai T; Shakya K; Sreerama L BMC Res Notes; 2016 Nov; 9(1):491. PubMed ID: 27871335 [TBL] [Abstract][Full Text] [Related]
37. Morphological plasticity in metal-sequestering earthworm chloragocytes: morphometric electron microscopy provides a biomarker. of exposure in field populations. Morgan AJ; Turner MP; Morgan JE Environ Toxicol Chem; 2002 Mar; 21(3):610-8. PubMed ID: 11878475 [TBL] [Abstract][Full Text] [Related]
38. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Puga AP; Abreu CA; Melo LC; Paz-Ferreiro J; Beesley L Environ Sci Pollut Res Int; 2015 Nov; 22(22):17606-14. PubMed ID: 26146374 [TBL] [Abstract][Full Text] [Related]
39. Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils. Berthelot Y; Valton E; Auroy A; Trottier B; Robidoux PY Chemosphere; 2008 Dec; 74(1):166-77. PubMed ID: 18829064 [TBL] [Abstract][Full Text] [Related]
40. [Acute toxicological effects of heavy metal pollution in soils on earthworms]. Song Y; Zhou Q; Xu H; Ren L; Sun T; Gong P Ying Yong Sheng Tai Xue Bao; 2002 Feb; 13(2):187-90. PubMed ID: 11993124 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]