These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7129969)
41. Accumulation of heavy metals from polluted soils by the earthworm, Lumbricus rubellus: can laboratory exposure of 'control' worms reduce biomonitoring problems? Corp N; Morgan AJ Environ Pollut; 1991; 74(1):39-52. PubMed ID: 15092074 [TBL] [Abstract][Full Text] [Related]
42. Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil. Holmstrup M; Sørensen JG; Overgaard J; Bayley M; Bindesbøl AM; Slotsbo S; Fisker KV; Maraldo K; Waagner D; Labouriau R; Asmund G Environ Pollut; 2011 Jan; 159(1):190-197. PubMed ID: 20870326 [TBL] [Abstract][Full Text] [Related]
43. Stable strontium accumulation by earthworms: a paradigm for radiostrontium interactions with its cationic analogue, calcium. Morgan JE; Richards SP; Morgan AJ Environ Toxicol Chem; 2001 Jun; 20(6):1236-43. PubMed ID: 11392133 [TBL] [Abstract][Full Text] [Related]
44. Exotic Earthworms Decrease Cd, Hg, and Pb Pools in Upland Forest Soils of Vermont and New Hampshire USA. Richardson JB; Görres JH; Friedland AJ Bull Environ Contam Toxicol; 2017 Oct; 99(4):428-432. PubMed ID: 28884204 [TBL] [Abstract][Full Text] [Related]
45. Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils? Beaumelle L; Lamy I; Cheviron N; Hedde M Environ Pollut; 2014 Aug; 191():182-9. PubMed ID: 24852409 [TBL] [Abstract][Full Text] [Related]
46. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT. Kowald GR; Stürzenbaum SR; Blindauer CA Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26742040 [TBL] [Abstract][Full Text] [Related]
47. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. Andre J; Charnock J; Stürzenbaum SR; Kille P; Morgan AJ; Hodson ME Environ Sci Technol; 2009 Sep; 43(17):6822-9. PubMed ID: 19764255 [TBL] [Abstract][Full Text] [Related]
48. Differences in the accumulated metal concentrations in two epigeic earthworm species (Lumbricus rubellus and Dendrodrilus rubidus) living in contaminated soils. Morgan JE; Morgan AJ Bull Environ Contam Toxicol; 1991 Aug; 47(2):296-301. PubMed ID: 1912707 [No Abstract] [Full Text] [Related]
49. Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction. Li LZ; Zhou DM; Wang P; Luo XS Ecotoxicol Environ Saf; 2008 Nov; 71(3):632-7. PubMed ID: 18502505 [TBL] [Abstract][Full Text] [Related]
50. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran. Hesami R; Salimi A; Ghaderian SM Environ Sci Pollut Res Int; 2018 Mar; 25(9):8701-8714. PubMed ID: 29322395 [TBL] [Abstract][Full Text] [Related]
51. The elemental composition of the chloragosomes of two earthworm species (Lumbricus terrestris and Allolobophora longa) determined by electron probe X-ray microanalysis of freeze-dried cryosections. Morgan AJ; Winters C Histochemistry; 1982; 73(4):589-98. PubMed ID: 7068443 [TBL] [Abstract][Full Text] [Related]
52. Metal compartmentation and speciation in a soil sentinel: the earthworm, Dendrodrilus rubidus. Cotter-Howells J; Charnock JM; Winters C; Kille P; Fry JC; Morgan AJ Environ Sci Technol; 2005 Oct; 39(19):7731-40. PubMed ID: 16245852 [TBL] [Abstract][Full Text] [Related]
53. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
54. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content. González-Alcaraz MN; Loureiro S; van Gestel CAM Chemosphere; 2018 Apr; 197():26-32. PubMed ID: 29331715 [TBL] [Abstract][Full Text] [Related]
55. Structural equation model of the relationship between metals in contaminated soil and in earthworm (Metaphire californica) in Hunan Province, subtropical China. Wang K; Qiao Y; Li H; Zhang H; Yue S; Ji X; Liu L Ecotoxicol Environ Saf; 2018 Jul; 156():443-451. PubMed ID: 29605664 [TBL] [Abstract][Full Text] [Related]
56. Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Morgan JE; Morgan AJ Environ Pollut; 1988; 54(2):123-38. PubMed ID: 15092529 [TBL] [Abstract][Full Text] [Related]
57. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Hobbelen PH; Koolhaas JE; van Gestel CA Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310 [TBL] [Abstract][Full Text] [Related]
58. Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites. Anderson C; Cunha L; Sechi P; Kille P; Spurgeon D BMC Genet; 2017 Nov; 18(1):97. PubMed ID: 29149838 [TBL] [Abstract][Full Text] [Related]
59. Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Azizi AB; Lim MP; Noor ZM; Abdullah N Ecotoxicol Environ Saf; 2013 Apr; 90():13-20. PubMed ID: 23294636 [TBL] [Abstract][Full Text] [Related]
60. Food-chain transfer of cadmium and zinc from contaminated Urtica dioica to Helix aspersa and Lumbricus terrestris. Sinnett DE; Hodson ME; Hutchings TR Environ Toxicol Chem; 2009 Aug; 28(8):1756-66. PubMed ID: 19292567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]