BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7130127)

  • 1. Aerotactic response of Azospirillum brasilense.
    Barak R; Nur I; Okon Y; Henis Y
    J Bacteriol; 1982 Nov; 152(2):643-9. PubMed ID: 7130127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling aerotaxis band formation in Azospirillum brasilense.
    Elmas M; Alexiades V; O'Neal L; Alexandre G
    BMC Microbiol; 2019 May; 19(1):101. PubMed ID: 31101077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen taxis and proton motive force in Azospirillum brasilense.
    Zhulin IB; Bespalov VA; Johnson MS; Taylor BL
    J Bacteriol; 1996 Sep; 178(17):5199-204. PubMed ID: 8752338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model of bacterial band formation in aerotaxis.
    Mazzag BC; Zhulin IB; Mogilner A
    Biophys J; 2003 Dec; 85(6):3558-74. PubMed ID: 14645050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerotaxis and chemotaxis ofAzospirillum brasilense: A note.
    Okon Y; Cakmakci L; Nur I; Chet I
    Microb Ecol; 1980 Sep; 6(3):277-80. PubMed ID: 24227135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense.
    O'Neal L; Ryu MH; Gomelsky M; Alexandre G
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28264994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.
    Bible AN; Khalsa-Moyers GK; Mukherjee T; Green CS; Mishra P; Purcell A; Aksenova A; Hurst GB; Alexandre G
    Appl Environ Microbiol; 2015 Dec; 81(24):8346-57. PubMed ID: 26407887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture.
    Nelson LM; Knowles R
    Can J Microbiol; 1978 Nov; 24(11):1395-403. PubMed ID: 743647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of the aerotactic response in a bacterial suspension.
    Bouvard J; Douarche C; Mergaert P; Auradou H; Moisy F
    Phys Rev E; 2022 Sep; 106(3-1):034404. PubMed ID: 36266851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense.
    Stephens BB; Loar SN; Alexandre G
    J Bacteriol; 2006 Jul; 188(13):4759-68. PubMed ID: 16788185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PilZ-Containing Chemotaxis Receptor Mediates Oxygen and Wheat Root Sensing in
    O'Neal L; Akhter S; Alexandre G
    Front Microbiol; 2019; 10():312. PubMed ID: 30881352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies of nitrogen-fixing bacteria associated with grasses in Israel with Azospirillum brasilense.
    Nur I; Okon Y; Henis Y
    Can J Microbiol; 1980 Jun; 26(6):714-8. PubMed ID: 7397611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid sideways/longitudinal swimming in the monoflagellate
    Stricker L; Guido I; Breithaupt T; Mazza MG; Vollmer J
    J R Soc Interface; 2020 Oct; 17(171):20200559. PubMed ID: 33109020
    [No Abstract]   [Full Text] [Related]  

  • 15. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.
    Rodriguez H; Gonzalez T; Goire I; Bashan Y
    Naturwissenschaften; 2004 Nov; 91(11):552-5. PubMed ID: 15502903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.
    Palacios OA; Choix FJ; Bashan Y; de-Bashan LE
    Res Microbiol; 2016 Jun; 167(5):367-79. PubMed ID: 26924113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt tolerance of Azospirillum brasilense.
    Rao AV; Venkateswarlu B
    Acta Microbiol Hung; 1985; 32(3):221-4. PubMed ID: 3936328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azospirillum brasilense, a Beneficial Soil Bacterium: Isolation and Cultivation.
    Alexandre G
    Curr Protoc Microbiol; 2017 Nov; 47():3E.1.1-3E.1.10. PubMed ID: 29120487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum.
    Hartmann A; Burris RH
    J Bacteriol; 1987 Mar; 169(3):944-8. PubMed ID: 2880836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotaxis of azospirillum species to aromatic compounds.
    Lopez-de-Victoria G; Lovell CR
    Appl Environ Microbiol; 1993 Sep; 59(9):2951-5. PubMed ID: 16349041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.