BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7130222)

  • 1. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry.
    Dehl RE
    J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry.
    Prewitt JM
    J Biomed Mater Res; 1984 Jan; 18(1):123-5. PubMed ID: 6699029
    [No Abstract]   [Full Text] [Related]  

  • 3. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue response to Plasti-Pore and Proplast otologic implants in the middle ears of cats.
    Teichgraeber JF; Spector M; Per-Lee JH; Jackson RT
    Am J Otol; 1983 Oct; 5(2):127-36. PubMed ID: 6359894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A; Kovács J; Szabóné Revész P
    Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network.
    Zoghlami K; Gómez-Gras D; Corbella M; Darragi F
    Microsc Res Tech; 2008 Nov; 71(11):816-21. PubMed ID: 18767050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials.
    Moro F; Böhni H
    J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of tissue growth into Proplast and porous polyethylene implants in bone.
    Spector M; Harmon SL; Kreutner A
    J Biomed Mater Res; 1979 Sep; 13(5):677-92. PubMed ID: 479215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the reaction of human tissue to proplast.
    Halstead A; Jones CW; Rawlings RD
    J Biomed Mater Res; 1979 Jan; 13(1):121-34. PubMed ID: 429380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demineralized dentin 3D porosity and pore size distribution using mercury porosimetry.
    Vennat E; Bogicevic C; Fleureau JM; Degrange M
    Dent Mater; 2009 Jun; 25(6):729-35. PubMed ID: 19174308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry.
    Urban J; Eeltink S; Jandera P; Schoenmakers PJ
    J Chromatogr A; 2008 Feb; 1182(2):161-8. PubMed ID: 18206896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcutaneous implants coated with tissue-engineered cartilage.
    Kim SW; Dobratz EJ; Ballert JA; Voglewede AT; Park SS
    Laryngoscope; 2009 Jan; 119(1):62-6. PubMed ID: 19117288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption.
    Kaufmann J; Loser R; Leemann A
    J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore structure engineering for carbon foams as possible bone implant material.
    Turgut G; Eksilioglu A; Gencay N; Gonen E; Hekim N; Yardim MF; Sakiz D; Ekinci E
    J Biomed Mater Res A; 2008 Jun; 85(3):588-96. PubMed ID: 17806113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry.
    Rigby SP; Fletcher RS; Riley SN
    J Colloid Interface Sci; 2001 Aug; 240(1):190-210. PubMed ID: 11446801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods.
    Egger CC; du Fresne C; Raman VI; Schädler V; Frechen T; Roth SV; Müller-Buschbaum P
    Langmuir; 2008 Jun; 24(11):5877-87. PubMed ID: 18442280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore size distribution in tablets measured with a morphological sieve.
    Wu YS; van Vliet LJ; Frijlink HW; van der Voort Maarschalk K
    Int J Pharm; 2007 Sep; 342(1-2):176-83. PubMed ID: 17580106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porosity of different dental luting cements.
    Milutinović-Nikolić AD; Medić VB; Vuković ZM
    Dent Mater; 2007 Jun; 23(6):674-8. PubMed ID: 16860859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.